

PTA Overview

This is the documentation for the PTA python package. PTA is available on git [https://gitlab.com/csb.ethz/pta/] and via pip [https://pypi.org/project/pta/]. See
getting started for the installation instructions and a simple
example.

Probabilistic Thermodynamic Analysis

Probabilistic Thermodynamic Analysis (PTA) [1] is a
framework for the exploration of the thermodynamic properties of a metabolic network. In
PTA, we consider the steady-state thermodynamic space of a network, that is, the
space of standard reaction energies and metabolite concentrations that are compatible
with steady state flux constraints. The uncertainty of the variables in the
thermodynamic space is modeled with a probability distribution, allowing analysis with
optimization and sampling approaches.

Probabilistic Metabolic Optimization (PMO)

PMO aims at finding the most probable values of reaction energies and metabolite
concentrations that are compatible with the steady state constrain. This method is
particularly useful to indentify features of the network that are thermodynamically
unrealistic. For example, PMO can identify substrate channeling, incorrect cofactors or
inaccurate directionalities.

Thermodynamic and Flux Sampling (TFS)

TFS allows to jointly sample the thermodynamic and flux spaces of a network. The method
provides estimates of metabolite concentrations, reactions directions, and flux
distributions.

References

[1]
Mattia G Gollub, Hans-Michael Kaltenbach, and Jörg Stelling. Probabilistic thermodynamic analysis of metabolic networks. Bioinformatics, 37(18):2938–2945, 2021.

 1. Getting started

1. Getting started

1.1. Requirements

In order to install PTA you need:

	Windows, Linux or OSX operating system.

	Python 3.8 or newer.

	One of the QP + MILP solvers supported by CVXPY [https://www.cvxpy.org/tutorial/advanced/index.html#choosing-a-solver]. For models
where all reaction directions are fixed, a QP solver is sufficient.

	Optional (only for running the samplers):

	A compiler supporting C++ 17.

	The Gurobi solver (free for academia). Make sure you install the python bindings [https://support.gurobi.com/hc/en-us/articles/360044290292-How-do-I-install-Gurobi-for-Python-].
On OSX systems you may need to manually set the environment variable GUROBI_HOME
to /Library/gurobi<version>/<platform>, since the Gurobi installer does not do it
automatically.

1.2. Installation

Once your system satisfies all the requirements, you can install PTA through the Python
Package Index:

pip install pta

1.2.1. Installing PTA without samplers

You can install PTA without compiling the samplers by defining the PTA_NO_SAMPLERS
environment variable:

PTA_NO_SAMPLERS=1 pip install pta # Linux, OSX
set "PTA_NO_SAMPLERS=1" && pip install pta # Windows

Installing PTA this way does not require Gurobi and the C++ compiler, but the
functionalities will be limited to running PMO and model assessment methods. The sampler
will not work.

1.3. Simple example

This example shows a basic workflow with PTA. First it loads a model and creates its
thermodynamic space, then it runs PMO and TFS on it.

 1import enkie
 2import pta
 3
 4# Load a SBML model and set bounds on known rates (e.g. growth).
 5model = pta.load_example_model("e_coli_core")
 6model.reactions.BIOMASS_Ecoli_core_w_GAM.lower_bound = 0.5
 7
 8# Preprocess the model to make sure it is thermodynamically consistent.
 9pta.prepare_for_pta(model)
10
11# Construct the thermodynamic space of the model.
12thermodynamic_space = pta.ThermodynamicSpace.from_cobrapy_model(
13 model,
14 metabolites_namespace="bigg.metabolite",
15 parameters=enkie.CompartmentParameters.load("e_coli")
16)
17
18# Run PMO on the model (by default it maximizes the probability of concentrations
19# and reaction energies).
20problem = pta.PmoProblem(model, thermodynamic_space)
21problem.solve()
22
23# Analyze the predicted concentrations and reaction energies, revealing potential
24# knowledge gaps and inaccuracies in the model.
25pta.QuantitativeAssessment(problem).summary()
26
27# Sample the thermodynamic space of the network.
28tfs_model = pta.TFSModel(model, thermodynamic_space, solver="GUROBI")
29sampling_result = pta.sample_drg(tfs_model)
30# sampling_result now contains samples of reaction energies as well as the
31# probability of each orthant.

1.4. Expanding the example

The next pages of this documentation provide more details about each step and how to
customize it for your work. You can also look at additional
examples [https://gitlab.com/csb.ethz/pta/-/tree/main/examples].

	You can gain more control over the preprocessing step.

	The thermodynamic space should be constructed using
parameters (pH, ionic strength, …) and metabolite concentrations representative of
the system you are modeling.

	You can use different objectives for PMO and access the predicted values
directly.

	You can use the information provided by
QuantitativeAssessment to curate your model.

	TFS can be used to characterize the feasible thermodynamic and flux
spaces of the network.

 2. Model preprocessing

2. Model preprocessing

A model must be thermodynamically sound in order to be used in PTA, which is usually not
the case for published genome-scale models. We provide a simple method that
automatically preprocesses a model for use in PTA.

1pta.prepare_for_pta(model)

The modifications performed by this method include relaxing flux bounds, removing
blocked reactions and removing “dead-end” futile cycles, thus they do not add further
constraints to the capabilities of the model.

However, in some cases it may be relevant to obtain a complete report of the issues
present in the model or to resolve these issues manually. The following sections explain
how to do that. Only either prepare_for_pta() or the steps below are required.

2.1. Blocked reactions

In PTA all reactions have a well-defined direction, meaning that all reaction must have
non-zero flux. This requires that all blocked reactions are removed from the model in
advance. You can easily do this using COBRApy’s functions:

1import cobra
2from cobra.flux_analysis.variability import find_blocked_reactions
3
4model.remove_reactions(
5 find_blocked_reactions(model),
6 remove_orphans=True
7)

2.2. Forced internal cycles

Many models contain thermodynamically unfeasible internal cycles that
must be active in any non-zero solution. This is usually a consequence of incorrect
irreversibilities and “dead-end” cycles. For example:

	The SUCDi and FRD7 reactions in the e_coli_core model both have the
same stoichiometry and are irreversible, but in opposing directions.

SUCDi: succ_c + q8_c -> q8h2_c + fum_c
FRD7: q8h2_c + fum_c -> succ_c + q8_c

This would imply
that both directions are thermodynamically favorable, which is not possible. The
solution is to make both reactions reversible and let flux and thermodynamic
constraints determine their direction.

	The FOMETRi and THFAT in the iML1515 model suffer of the same problem:

THFAT: h2o_c + methf_c -> 5fthf_c + h_c
FOMETRi: 5fthf_c + h_c -> h2o_c + methf_c

However, this is a “dead-end” cycle, since only 5fthf_c does not participate
to any other reaction. In this case, even making the two reactions reversible would
not help, because any non-zero flux solution at steady state requires the two
reactions to have opposing directions. Since cycles like this would anyway have no
effect on the rest of the network we simply remove the reactions involved.

We emphasize that the presence of internal cycles in general is not a problem,
and one of the strengths of PTA is to obtain loopless, thermodynamically feasible
solutions. This section deals with internal cycles that must always be active and thus
make the model unfeasible in principle.

2.2.1. Detecting inconsistencies

You can use the StructuralAssessment class to list all the problematic cycles in
the model.

1assessment = pta.StructuralAssessment(model, 'Biomass', 'ATPM')
2assessment.summary()

> The following internal cycles are thermodynamically unfeasible, but must be active
in any non-zero flux solution, meaning that the model is thermodynamically
inconsistent.
...
0. THMDt2pp_copy1, THMDt2pp_copy2
1. ALAt2pp_copy1, ALAt2pp_copy2
2. CYTDt2pp_copy1, CYTDt2pp_copy2
3. ACCOAL, PPAKr, PTA2
4. ADNt2pp_copy1, ADNt2pp_copy2
5. FOMETRi, THFAT
...

Note that you need to specify the identifier of the biomass and ATP maintenance
reactions.

2.2.2. Resolving inconsistencies

You can then resolve the problems manually or attempt to solve them automatically
(logging is only needed to print the actions performed):

1import logging
2logging.basicConfig()
3logging.getLogger().setLevel(logging.INFO)
4
5assessment.autoresolve(model)

Removing bounds for all reactions in the cycle: THMDt2pp_copy1, THMDt2pp_copy2.
Removing bounds for all reactions in the cycle: ALAt2pp_copy1, ALAt2pp_copy2.
Removing bounds for all reactions in the cycle: CYTDt2pp_copy1, CYTDt2pp_copy2.
Removing bounds for all reactions in the cycle: ACCOAL, PPAKr, PTA2.
Removing bounds for all reactions in the cycle: ADNt2pp_copy1, ADNt2pp_copy2.
Removing all reactions of the dead-end cycle: FOMETRi, THFAT.
...

If you identified inconsistencies in a condition-specific model, you can apply
autoresolve() on the base model in order to have the curation available for any
condition-specific model generated from it.

2.3. Computing tighter bounds

To make the model simpler for later steps (PMO and TFS) it is good practice to restrict
the bounds of each reaction to the bounds computed with Flux Variability Analysis.

1pta.utils.tighten_model_bounds(model)

In order to not overconstrain the model and to avoid introducing small coefficients that
would be challenging for PMO, this function may add small numerical margins. In any
case, the resulting bounds are guaranteed to be equal or tighter than the original ones.

 3. The thermodynamic space

3. The thermodynamic space

3.1. The quick way

The thermodynamic space of a network models metabolite and free energies for a selected
set of reactions. In absence of additional information, a thermodynamic space can be
constructed from a COBRApy model:

1thermodynamic_space = pta.ThermodynamicSpace.from_cobrapy_model(model)

This is a wrapper around the constructor of the :class:.:ThermodynamicSpace class,
which can be used when interfacing with other modeling frameworks.

3.2. Advanced initialization

When additional information is available, one can provide a series of additional
optional parameters. The parameters are explained in the following sections.

1thermodynamic_space = pta.ThermodynamicSpace.from_cobrapy_model(
2 model,
3 metabolites_namespace,
4 constrained_rxns,
5 estimator,
6 parameters,
7 concentrations
8)

3.2.1. Metabolites namespace

PTA needs to know how to find standardized metabolite identifiers. PTA reads identifiers
from the annotations in the SBML, but you need to specify which annotations you want to
use. For example, for models downloaded from the BiGG database, it is common to choose
the "bigg.metabolite" namespace. By default, the first annotation for each
metabolite is used, but it is always recommended to specify a namespace manually to
avoid inconsistencies.

3.2.2. Constrained reactions

The constrained_rxns parameter specifies which reactions in the network should
be modeled in the thermodynamic space. Thermodynamic constraints should be applied only
to balanced reaction, as pseudo-reactions are not thermodynamically realistic. Thus, by
default, boundary reactions and biomass are excluded. Reactions can be specified as
lists of indices, lists of identifiers or lists of reactions. As a starting point, we
recommend building the list of constrained reactions using:

1pta.utils.get_candidate_thermodynamic_constraints(
2 model,
3 metabolites_namespace
4)

3.2.3. Estimator

An object used for estimating standard reaction energies. At the moment PTA only uses
eQuilibrator (EquilibratorGibbsEstimator), but you are free to implement an
interface for alternative estimation tools.

3.2.4. Compartment parameters

An object specifying the parameters (pH, pMg, ionic strength, electrostatic potential)
of each compartment. Temperature must be constant for the entire system. You can either
fill this object yourself or load one of the default ones (currently e_coli and
human):

1import enkie
2
3parameters = enkie.CompartmentParameters.load('e_coli')

3.2.5. Concentrations prior

ConcentrationsPrior objects specify measured or assumed distributions for the
concentration of each metabolite. Since measurements are usually not available for all
metabolites, PTA will use the following information, in order of preference, to
determine the distribution of metabolite M in compartment C:

	The distribution of the concentration of M itself.

	A default distribution for any metabolite in C.

	A default distribution for any metabolite.

You can load priors from files or create your own. PTA includes priors for the
extracellular concentrations in M9 (M9_aerobic, M9_anaerobic) and for
the intracellular concentrations with different carbon sources (ecoli_M9_<s>,
where <s> can be ac, fru, gal, glc,
glcn, glyc, pyr, succ) based on
[1]. Different can also be combined. In case of conflict, the added
prior overwrites distributions of the original prior.

 1# Load the prior for metabolite concentrations in M9 media.
 2concentrations = pta.ConcentrationsPrior.load('M9_aerobic')
 3
 4# Add the prior for intracellular concentrations when growing on succinate.
 5concentrations.add(pta.ConcentrationsPrior.load('ecoli_M9_succ'))
 6
 7# Manually add a distribution. Note that we must use log-normal distributions.
 8import numpy as np
 9concentrations.metabolite_distributions[('bigg.metabolite:g3p', 'c')] = \
10 pta.LogNormalDistribution(log_mean=np.log(1e-4), log_std=0.2)
11
12# Updating identifiers after a modification is recommended to make sure that we can
13properly recognize identifiers from different namespaces.
14concentrations.update_identifiers()
15
16# Save your newly created prior for later use.
17concentrations.save('my_prior.csv')

3.3. Thermodynamic space basis

Because of correlation existing within and between metabolite concentrations, standard
reaction energies and reaction energies, the dimensionality of the thermodynamic space
is usually lower than the number of variables. One can easily obtain a full-dimensional
representation that can be used for PMO and TFS:

1basis = pta.ThermodynamicSpaceBasis(thermodynamic_space)

This class contains a mapping between a full dimensional basis and the variables of the
thermodynamic space. Variables of the basis are referred to as m in
[2].

3.4. References

[1]
Luca Gerosa, Bart RB Haverkorn van Rijsewijk, Dimitris Christodoulou, Karl Kochanowski, Thomas SB Schmidt, Elad Noor, and Uwe Sauer. Pseudo-transition analysis identifies the key regulators of dynamic metabolic adaptations from steady-state data. Cell systems, 1(4):270–282, 2015.

[2]
Mattia G Gollub, Hans-Michael Kaltenbach, and Jörg Stelling. Probabilistic thermodynamic analysis of metabolic networks. Bioinformatics, 37(18):2938–2945, 2021.

 4. Optimizing thermodynamics

4. Optimizing thermodynamics

Probabilistic Metabolic Optimization (PMO) allows to run optimization problems using
both flux and thermodynamic constraints. This is done using the PmoProblem
class.

1# Create a PMO problem.
2problem = pta.PmoProblem(model, thermodynamic_space)
3
4# Solve the PMO problem. The object now contains the solution.
5status = problem.solve()

Internally, optimization problems are constructed using CVXPY [https://www.cvxpy.org/] as interface for different solvers. The CVXPY optimization
variables are problem.m (the basis of the thermodynamic space),
problem.d (the direction of the reactions constrained by thermodynamics) and
problem.vs (the scaled fluxes). For convenience, we provide properties to access
predicted values of the biologically relevant variables v (fluxes),
log_c (log-concentrations), drg (reaction energies), drg0
(standard reaction energies).

4.1. Setting the objective

By default, PMO maximizes the probability of the variables in the thermodynamic space.
It is possible to set custom objective (e.g. on fluxes or concentrations) by passing a
function creating the objective to the constructor.

1import cvxpy as cp
2objective = lambda p: cp.Minimize(p.vs[26])
3problem = pta.PmoProblem(model, thermodynamic_space, objective=objective)

4.2. Numerics

PMO uses the Big-M formulation to encode the directionality constraints in a MILP
problem. While this is an efficient representation, it is also known to have numerical
limitations. In particular, PMO may fail or give inaccurate solutions if fluxes and
reaction energies span more than nine orders of magnitude.

For this reason, we internally transform the problem to use scaled fluxes and a
full-dimensional basis for the thermodynamic space. While we can automatically compute
optimal values for the Big-M coefficients of fluxes, PMO guidance for the reaction
energies. In practice, we assume that all reaction energies have magnitude between 0.1
and 1000 kJ/mol, which we believe is biologically reasonable. It is possible to change
these values in the constructor of PmoProblem in case larger or smaller reaction
energies are expected. However, this should be done with care, keeping in mind that it
may lead to numerical issues.

Currently we optimized numerics-related solver parameters for Gurobi only. If you use
other solvers, you may need to use the solver_options argument to set stricter
feasibility tolerances for your solver.

 5. Model assessment

5. Model assessment

Thermodynamics-based model assessment consists in finding parts of the network where the
model structure and the measured or assumed metabolite concentrations are not
compatible, suggesting model inaccuracies or novel mechanisms. Such cases can have
different explanations:

	COBRA models have been constructed with Flux Balance Analysis (FBA) as the main
application and frequently contain thermodynamic inaccuracies. Some reactions may be
annotated as irreversible in the model, while they are not in practice.

	The direct interpretation of COBRA models is that individual reactions are independent
events, i.e. (1) substrates diffuse to the enzyme, (2) substrates are converted to
products (3) products equilibrate with the compartment. However the actual mechanism
could be different. For example, substrate channeling could occur. In that case, an
intermediate is passed directly from one enzyme to the other, without equilibrating
with the metabolite pool in the compartment. While this mechanism is irrelevant for
FBA, it has significant influence on thermodynamics.

	Despite continuous improvements, we still don’t know the exact stoichiometry of
metabolic networks, even for well-studies organisms. Reactions may be missing or have
incorrect cofactors (with different thermodynamic properties).

Additionally, model assessment can tell us which reactions impose the strongest
constraints on the thermodynamics of the network.

See [1] for additional information.

5.1. Thermodynamic anomalies

We can use PMO to detect anomalies in the network, i.e. variables whose predicted
value is significantly different from its prior. A predicted value is flagged as anomaly
if its z-score [https://en.wikipedia.org/wiki/Standard_score] is larger than a
certain threshold. A threshold of one means that a variable is flagged only if its
predicted value is at least one standard deviation away from the its initial estimate.

5.2. Identifying anomalies

The QuantitativeAssessment class can be used to detect anomalies in a PMO
solution. While you can set arbitrary objective in PMO, we recommend to use the default
objective (maximize the probability of the thermodynamic variables).

1# Construct and solve the PMO problem.
2problem = pta.PmoProblem(model, thermodynamic_space)
3problem.solve()
4
5# Analyze the result to find anomalies in the predicted values.
6assessment = pta.QuantitativeAssessment(problem)
7assessment.summary()

Quantitative thermodynamic assessment summary:
--
conentrations: mM, free energies: kJ/mol

> The following metabolites have been flagged as anomalies because their predicted
 concentration has an absolute z-score greater than 1.0:
 id conc z_log_c
524 mqn8_c 3.831e+03 4.843
520 mql8_c 1.434e-05 -4.843
234 fadh2_c 2.214e-05 -4.627
544 iasp_c 7.845e-05 -3.995
...

> No anomaly found in non-intracellular concentrations.

> The following reactions have been flagged as anomalies because their predicted
 free energy or standard free energy has an absolute z-score greater than 1.0:
 id v drg0 drg z_drg z_drg0 sp_drg
178 ASPO4 2.020e-08 84.123 -1.000e-03 -9.908 -5.824e+00 1.547e+00
479 GLYCTO3 1.373e-07 59.109 -1.000e-03 -7.215 -4.758e+00 2.611e-01
378 FRD2 7.783e-07 -75.359 -2.391e+01 6.513 4.571e+00 4.807e-12
...

> The following reactions are predicted to impose strong thermodynamic constraints
 on the network because their shadow price is greater than 0.1:
 id v drg0 drg z_drg z_drg0 sp_drg
178 ASPO4 2.020e-08 84.123 -1.000e-03 -9.908 -5.824e+00 1.547
127 AIRC3 -2.692e-01 -30.990 1.000e-03 5.580 3.627e+00 1.161
588 IMPD 1.462e-01 48.407 -1.000e-03 -5.900 -4.249e+00 0.991
...

Note that you can adjust the threshold for anomalies in the constructor of the
QuantitativeAssessment class.

5.3. Interpreting and curating anomalies

Once you obtain the predicted anomalies you should investigate what is the reason. Here
is a checklist of the most common reasons for anomalies:

	Is the anomaly expected? E.g. oxygen concentration is often flagged as anomaly, but it
is normal to expect low concentrations.

	If the reaction is irreversible, is this annotation correct? Sometimes COBRA models
are too restrictive in that sense.

	Is the metabolite channeled between two reactions? Or is there at least some hint for
that in the literature or in databases such as STRING [https://string-db.org/]?

	Is the stoichiometry of the reaction correct? Maybe a reaction can use different
cofactors. Moreover, some core models may use a single electron acceptor for all
reactions, even if different ones are used in practice.

	How reliable is the standard reaction energy for the reaction? Free energies for
exotic or large compounds are determined with group contribution, which may
underestimate the uncertainty.

	Is the structure of the metabolite defined? Complex sugars such as glycogen can have
different structures in different databases.

Points 3 and 4 are particularly interesting, as they can reveal new biological
mechanisms. See [1] for additional information.

The snippet above shows part of the output obtained running the assessment on the
iJO1366 model. It shows anomalies in the concentrations of mqn8, mql8
and iasp as well as in the standard free energy of of the reaction they
participate to (aspartate oxidase, ASPO4). In this case the most probable
explanation is that iminoaspartate (iasp) is channeled between aspartate oxidase
and quinolinate synthase ([2]).

We can now curate the model by replacing the two reactions with a lumped reaction
representing the channel. Since aspartate oxidase can use different electron acceptors,
we should do the same with all variants of the reaction.

We recommend investigating and resolving anomalies iteratively: start from the highest
anomaly and either resolve it or accept it. If you modified the model, run the
assessment again and continue with the next highest anomaly.

5.4. Performance considerations

Running PMO can take a considerable amount of time on medium-large models. The runtime
is even higher when the model contains several anomalies because the solution is pushed
towards regions of low probability (further away from the objective). In these cases we
recommend to separate the process in two steps:

	Run the assessment and curate the model for each compartment independently. For
example you can construct a thermodynamic space that only covers intracellular
reactions as follows:

 1# Get candidate thermodynamic constraints for the model, excluding
 2# extrcellular and periplasmic reactions.
 3constrained_rxn_ids = pta.get_candidate_thermodynamic_constraints(
 4 model,
 5 metabolites_namespace="bigg.metabolite",
 6 exclude_compartments=['p', 'e']
 7)
 8
 9# Construct a thermodynamic space covering only the selected reactions.
10thermodynamic_space = pta.ThermodynamicSpace.from_cobrapy_model(
11 model,
12 metabolites_namespace="bigg.metabolite",
13 constrained_rxns=constrained_rxn_ids
14)

	After curating each compartment, you can apply PMO and model assessment on the entire
network. This should now be much faster.

5.5. References

[1]
(1,2)
Mattia G Gollub, Hans-Michael Kaltenbach, and Jörg Stelling. Probabilistic thermodynamic analysis of metabolic networks. Bioinformatics, 37(18):2938–2945, 2021.

[2]
Ilaria Marinoni, Simona Nonnis, Carmine Monteferrante, Peter Heathcote, Elisabeth Härtig, Lars H Böttger, Alfred X Trautwein, Armando Negri, Alessandra M Albertini, and Gabriella Tedeschi. Characterization of l-aspartate oxidase and quinolinate synthase from bacillus subtilis. The FEBS journal, 275(20):5090–5107, 2008.

 6. Sampling thermodynamics and fluxes

6. Sampling thermodynamics and fluxes

Thermodynamics and Flux Sampling (TFS) allows to sample steady state reaction energies,
standard reaction energies, metabolite concentrations and fluxes in a metabolic network.

TFS consists in two main steps:

	Sample reaction energies and orthants (sets of reaction directions in the model).

	Sample standard reaction energies, metabolite concentrations and reaction fluxes
conditioned on the sampled reaction energies and orthants.

6.1. Sampling reaction energies

The first step is to sample reaction energies and estimate the probability of the
orthants of the thermodynamic space:

1# Wrap a cobrapy model and the corresponding thermodynamic space in a single object.
2tfs_model = pta.TFSModel(model, thermodynamic_space)
3
4# Sample the thermodynamic space.
5result = pta.sample_drg(tfs_model)

The result object contains the following fields:

	samples: Pandas data frame containing the samples of reaction energies.

	orthants: Pandas data frame containing the signs (-1 / +1) of the sampled
orthants. An additional column weight stores the weight of each orthant.

	psrf Pandas series containing the Potential Scale Reduction Factor (PSRF) of
each reaction energy. This is only used to assess convergence of the sampling
procedure.

Note that the space of steady state reaction energies is generally non-convex and
disconnected, thus convergence can take a high number of steps. While PTA tries to
automatically choose a good number of steps, this may not be sufficient for challenging
models and you may get a warning that sampling did not converge. In this case you should
manually tell sample_drg() to use more steps using the num_steps option.

6.2. Sampling the conditionals

The remaining quantities can be sampled from the reaction energies:

 1# Sample the natural logarithm of the metabolite concentrations. This function draws
 2# one concentration sample for each reaction energy sample.
 3log_conc = sample_log_conc_from_drg(thermodynamic_space, result.samples)
 4
 5# Sample the standard reaction energies. This function draws one standard reaction
 6# energy sample for each reaction energy sample.
 7drg0 = sample_drg0_from_drg(thermodynamic_space, result.samples)
 8
 9# Sample reaction fluxes. For each unique orthant represented by the reaction energy
10# samples this function draws a number of flux samples proportional to the weight of
11# the orthant.
12fluxes = sample_fluxes_from_drg(model, result.samples, result.orthants)

Each function returns a Pandas data frame containing the samples. For concentrations
and standard reaction energies, PTA can use an analytical expression of the conditional
probability, which makes sampling very fast. However, for fluxes we need to run uniform
sampling on each orthant separately, which can take a long time for medium-large models.
If sampling fluxes takes too long, pass fewer reaction energy samples to reduce the
number of orthants sampled.

 7. API Reference

7. API Reference

This page contains auto-generated API reference documentation [1].

	7.1. pta
	7.1.1.1. pta.data
	7.1.1.1.1.1. pta.data.concentration_priors

	7.1.1.1.1.2. pta.data.models

	7.1.1.2. pta.sampling
	7.1.1.2.1.1. pta.sampling.commons

	7.1.1.2.1.2. pta.sampling.convergence_manager

	7.1.1.2.1.3. pta.sampling.primitives

	7.1.1.2.1.4. pta.sampling.tfs

	7.1.1.2.1.5. pta.sampling.uniform

	7.1.2.1. pta.commons

	7.1.2.2. pta.concentrations_prior

	7.1.2.3. pta.constants

	7.1.2.4. pta.flux_space

	7.1.2.5. pta.model_assessment

	7.1.2.6. pta.pmo

	7.1.2.7. pta.thermodynamic_space

	7.1.2.8. pta.utils

[1]
Created with sphinx-autoapi [https://github.com/readthedocs/sphinx-autoapi]

 7.1. pta

7.1. pta

Probabilistic Thermodynamic Analysis of metabolic networks.

7.1.1. Subpackages

	7.1.1.1. pta.data
	7.1.1.1.1.1. pta.data.concentration_priors

	7.1.1.1.1.2. pta.data.models

	7.1.1.2. pta.sampling
	7.1.1.2.1.1. pta.sampling.commons

	7.1.1.2.1.2. pta.sampling.convergence_manager

	7.1.1.2.1.3. pta.sampling.primitives

	7.1.1.2.1.4. pta.sampling.tfs

	7.1.1.2.1.5. pta.sampling.uniform

7.1.2. Submodules

	7.1.2.1. pta.commons

	7.1.2.2. pta.concentrations_prior

	7.1.2.3. pta.constants

	7.1.2.4. pta.flux_space

	7.1.2.5. pta.model_assessment

	7.1.2.6. pta.pmo

	7.1.2.7. pta.thermodynamic_space

	7.1.2.8. pta.utils

 7.1.1.1. pta.data

7.1.1.1. pta.data

7.1.1.1.1. Subpackages

	7.1.1.1.1.1. pta.data.concentration_priors

	7.1.1.1.1.2. pta.data.models

 7.1.1.1.1.1. pta.data.concentration_priors

7.1.1.1.1.1. pta.data.concentration_priors

 7.1.1.1.1.2. pta.data.models

7.1.1.1.1.2. pta.data.models

 7.1.1.2. pta.sampling

7.1.1.2. pta.sampling

7.1.1.2.1. Submodules

	7.1.1.2.1.1. pta.sampling.commons

	7.1.1.2.1.2. pta.sampling.convergence_manager

	7.1.1.2.1.3. pta.sampling.primitives

	7.1.1.2.1.4. pta.sampling.tfs

	7.1.1.2.1.5. pta.sampling.uniform

 7.1.1.2.1.1. pta.sampling.commons

7.1.1.2.1.1. pta.sampling.commons

Common classes and methods for sampling algorithms.

7.1.1.2.1.1.1. Module Contents

	
exception pta.sampling.commons.SamplingException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raised when an exception occurs during sampling.

	
class pta.sampling.commons.SamplingResult(samples: pandas.DataFrame, psrf: pandas.Series, basis_samples: pandas.DataFrame = None, chains: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] = None)

	Encapsulates the result of a sampler.

	Parameters:

	
	samples (pd.DataFrame) – Data frame containing the samples as rows.

	psrf (pd.Series) – Series containing the PSRF of each variable.

	basis_samples (pd.DataFrame, optional) – The samples in the basis.

	chains (np.ndarray, optional) – The simulated chains.

	
property basis_samples: pandas.DataFrame

	Gets a data frame containing the samples in the basis.

	
property samples: pandas.DataFrame

	Gets a data frame containing the samples.

	
property chains: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Get the simulated chains.

	
property psrf: pandas.Series

	Gets the Potential Scale Reduction Factor (PSRF) of each variable.

	
check_convergence(max_psrf: float [https://docs.python.org/3/library/functions.html#float] = default_max_psrf) → bool [https://docs.python.org/3/library/functions.html#bool]

	Checks whether the chains converged according to the given criteria.

	Parameters:

	max_psrf (float [https://docs.python.org/3/library/functions.html#float], optional) – Maximum PSRF value for convergence.

	Returns:

	True if the test succeeded, false otherwise.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class pta.sampling.commons.SamplerInterface

	Interface for an MCMC sampler.

	
abstract property dimensionality: int [https://docs.python.org/3/library/functions.html#int]

	Get the dimensionality of the sampling space.

	
abstract simulate(settings: _pta_python_binaries.SamplerSettings, initial_points: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], directions_transform: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → Any

	Run the sampler with the given parameters.

	Parameters:

	
	settings (pb.SamplerSettings) – Sampling settings.

	initial_points (np.ndarray) – The initial points for the chains.

	directions_transform (np.ndarray) – The transform for the directions sampler.

	
abstract compute_psrf(result: Any) → pandas.Series

	Compute the potential scale reduction factors for the variables of interest
on a given set of chains.

	Parameters:

	result (Any) – The result of the sampling function.

	Returns:

	The computed potential scale reduction factors.

	Return type:

	pd.Series

	
abstract get_chains(result: Any) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Extract the simulated chains from a given result.

	Parameters:

	result (Any) – The result of the native sampling function.

	Returns:

	The simulated chains.

	Return type:

	np.ndarray

	
pta.sampling.commons.sample_from_chains(chains: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], num_samples: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Draws samples from a given set of chains.

	Parameters:

	
	chains (np.ndarray) – Numpy 3D array containing the chains.

	num_samples (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples to draw.

	Returns:

	Array of samples.

	Return type:

	np.ndarray

	
pta.sampling.commons.split_chains(chains: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Split the chains in two, threating each half as a new chain. This is often used
to detect systematic trends in a random walk.

	Parameters:

	chains (np.ndarray) – Numpy 3D array containing the input chains.

	Returns:

	Numpy 3D array containing the resulting chains.

	Return type:

	np.ndarray

	
pta.sampling.commons.apply_to_chains(chains: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], f: Callable[[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Apply a function to each sample of a group of chains.

	Parameters:

	
	chains (np.ndarray) – Numpy 3D array containing the input chains.

	f (Callable[[np.ndarray], np.ndarray]) – Function to apply to each sample.

	Returns:

	Numpy 3D array containing the transformed samples.

	Return type:

	np.ndarray

	
pta.sampling.commons.split_R(chains: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Compute the split-R (or Potential Scale Reduction Factor) of each variable in
the given chains.

	Parameters:

	chains (np.ndarray) – Numpy 3D array containing the input chains.

	Returns:

	Vector containing the split-R value for each variable.

	Return type:

	np.ndarray

	
pta.sampling.commons.fill_common_sampling_settings(settings: _pta_python_binaries.SamplerSettings, num_samples: int [https://docs.python.org/3/library/functions.html#int], num_steps: int [https://docs.python.org/3/library/functions.html#int], num_chains: int [https://docs.python.org/3/library/functions.html#int] = -1, num_warmup_steps: int [https://docs.python.org/3/library/functions.html#int] = -1, max_threads: int [https://docs.python.org/3/library/functions.html#int] = default_max_threads)

	Fills default values for common sampling settings.

	Parameters:

	
	settings (SamplerSettings) – The settings object to be filled.

	log_directory (str [https://docs.python.org/3/library/stdtypes.html#str]) – Directory in which the sampling logs should be stored.

	num_samples (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples to draw.

	num_steps (int [https://docs.python.org/3/library/functions.html#int]) – Number of steps to take with each chain.

	num_chains (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of chains to use. Will be set to the number of CPUs by default.

	num_warmup_steps (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of burn-in steps to discard. Will be set to half the number of steps by
default.

	log_interval (datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], optional) – Interval between each logging event.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the inputs are inconsistent.

 7.1.1.2.1.2. pta.sampling.convergence_manager

7.1.1.2.1.2. pta.sampling.convergence_manager

Management of MCMC simulation to achieve desired convergence criteria.

7.1.1.2.1.2.1. Module Contents

	
class pta.sampling.convergence_manager.ConvergenceManager(sampler: pta.sampling.commons.SamplerInterface, num_initial_steps: int [https://docs.python.org/3/library/functions.html#int] = -1, samples_based_rounding: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Class managing MCMC simulations to achieve desired convergence criteria.

	Parameters:

	
	sampler (Sampler) – Object implementing a specific MCMC sampler.

	num_initial_steps (int [https://docs.python.org/3/library/functions.html#int], optional) – Initial number of steps for simulations, by default -1 (automatic).

	samples_based_rounding (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, the direction sampling distribution will be adjusted after each
iteration based on the distribution of samples so far, by default False

	
run(settings: _pta_python_binaries.SamplerSettings, update_settings_function: Callable[[_pta_python_binaries.SamplerSettings, int [https://docs.python.org/3/library/functions.html#int]], None [https://docs.python.org/3/library/constants.html#None]], make_sampling_result_function: Callable[[Any], pta.sampling.commons.SamplingResult], initial_points: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], max_steps: int [https://docs.python.org/3/library/functions.html#int], max_psrf: float [https://docs.python.org/3/library/functions.html#float]) → pta.sampling.commons.SamplingResult

	Run the sampler using this manager until the given PSRF or maximum number of
steps is reached.

	Parameters:

	
	settings (pb.SamplerSettings) – The initial settings for the sampler.

	update_settings_function (Callable[[pb.SamplerSettings, int [https://docs.python.org/3/library/functions.html#int]], None]) – Function for updating the settings with different numbers of steps.

	make_sampling_result_function (Callable[[Any], SamplingResult]) – Function for packing the result of the native sampler in a SamplingResult
object.

	initial_points (np.ndarray) – The initial points for the simulation.

	max_steps (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of steps to simulate.

	max_psrf (float [https://docs.python.org/3/library/functions.html#float]) – Maximum PSRF to declare convergence.

	Returns:

	The result of the sampler.

	Return type:

	SamplingResult

	Raises:

	SamplingException – If the native sampler fails.

 7.1.1.2.1.3. pta.sampling.primitives

7.1.1.2.1.3. pta.sampling.primitives

Abstract base class for sampling over the flux polytope.

7.1.1.2.1.3.1. Module Contents

	
class pta.sampling.primitives.FluxSpaceSamplingModel(polytope: PolyRound.api.Polytope, reaction_ids: List[str [https://docs.python.org/3/library/stdtypes.html#str]])

	Bases: pta.sampling.commons.SamplerInterface

Object holding the information necessary to sample a flux space.

	Parameters:

	
	polytope (Polytope) – Polytope object describing the flux space.

	reaction_ids (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Identifiers of the reactions in the flux space.

	
property G: numpy.array

	Gets the left-hand side of the constraints of the flux space.

	
property h: numpy.array

	Gets the right-hand side of the constraints of the flux space.

	
property to_fluxes_transform: Tuple[numpy.array, numpy.array]

	Gets the transform from a point in the model to a point in the flux space.

	
property reaction_ids

	Gets the IDs of the reactions in the model.

	
property dimensionality: int [https://docs.python.org/3/library/functions.html#int]

	Gets the dimensionality of the flux space.

	
to_fluxes(value: numpy.array) → numpy.array

	Transform a point or matrix from the model to the flux space.

	Parameters:

	value (np.array) – Input values.

	Returns:

	The corresponding fluxes.

	Return type:

	np.array

	
get_initial_points(num_points: int [https://docs.python.org/3/library/functions.html#int]) → numpy.array

	Gets initial points for sampling fluxes.

	Parameters:

	
	model (UniformSamplingModel) – The model to sample.

	num_points (int [https://docs.python.org/3/library/functions.html#int]) – Number of initial points to generate.

	Returns:

	Array containing the initial points.

	Return type:

	np.array

 7.1.1.2.1.4. pta.sampling.tfs

7.1.1.2.1.4. pta.sampling.tfs

Thermodynamics-based sampling of free energies, concentrations and fluxes.

7.1.1.2.1.4.1. Module Contents

	
class pta.sampling.tfs.TFSModel(network: Union[cobra.Model, pta.flux_space.FluxSpace], thermodynamic_space: pta.thermodynamic_space.ThermodynamicSpace, thermodynamic_space_basis: pta.thermodynamic_space.ThermodynamicSpaceBasis = None, confidence_level: float [https://docs.python.org/3/library/functions.html#float] = 0.95, min_drg: float [https://docs.python.org/3/library/functions.html#float] = 0.1, max_drg: float [https://docs.python.org/3/library/functions.html#float] = 1000, solver: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, solver_options: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None)

	Bases: pta.sampling.commons.SamplerInterface

Object holding the information necessary to run TFS.

	Parameters:

	
	network (Union[cobra.Model, FluxSpace]) – Cobra model or FluxSpace object describing the flux space of the metabolic
network.

	thermodynamic_space (ThermodynamicSpace) – Description of the thermodynamic space of the metabolic network.

	thermodynamic_space_basis (ThermodynamicSpaceBasis, optional) – A basis for the thermodynamic space. If specified, m will be defined in this
basis.

	objective (Callable[[PmoProblem], cp.problems.objective.Objective], optional) – A function used to set the optimization objective. By default the probability of
in thermodynamic space is maximized.

	confidence_level (float [https://docs.python.org/3/library/functions.html#float], optional) – Confidence level (in the range \([0.0, 1.0[\)) on the joint of the
thermodynamic variables, by default 0.95.

	min_drg (float [https://docs.python.org/3/library/functions.html#float], optional) – Minimum magnitude for the reaction energy of each reaction, by default 1e-1.

	max_drg (float [https://docs.python.org/3/library/functions.html#float], optional) – Maximum magnitude for the reaction energy of each reaction, by default 1000.

	solver (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Name of the solver to use, this can be any of the solvers supported by CVXPY, by
default None.

	solver_options (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Dictionary specifying additional options for the solver.

	
property T: pta.thermodynamic_space.ThermodynamicSpace

	Gets the thermodynamic space used for sampling.

	
property F: pta.flux_space.FluxSpace

	Gets the flux space used for sampling.

	
property B: pta.thermodynamic_space.ThermodynamicSpaceBasis

	Gets the basis of the thermodynamic space used for sampling.

	
property pmo_args

	Gets the arguments used to construct PMO problems.

	
property dimensionality: int [https://docs.python.org/3/library/functions.html#int]

	Gets the dimensionality of the basis of the thermodynamic space.

	
property confidence_radius

	Gets the radius of the selected confidence region.

	
property drg_epsilon

	Gets the minimum magnitude of the reaction energy of irreversible
reactions.

	
property reversible_rxn_ids

	Gets the identifiers of the reversible reactions in the thermodynamic
space.

	
get_reversible_reactions_ids_T() → List

	Get the ids of the reversible reactions in the thermodynamic space

	Returns:

	The corresponding reactions ids

	Return type:

	List

	
to_drg(value: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Transform a point or matrix from the the basis to reaction energies.

	Parameters:

	value (np.ndarray) – Input values in the basis.

	Returns:

	The corresponding reaction energies.

	Return type:

	np.ndarray

	
simulate(settings: _pta_python_binaries.SamplerSettings, initial_points: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], directions_transform: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → _pta_python_binaries.TFSResult

	Run the sampler with the given parameters.

	Parameters:

	
	settings (pb.SamplerSettings) – Sampling settings.

	initial_points (np.ndarray) – The initial points for the chains.

	directions_transform (np.ndarray) – The transform for the directions sampler.

	
compute_psrf(result: _pta_python_binaries.TFSResult) → pandas.Series

	Compute the potential scale reduction factors for the variables of interest
on a given set of chains.

	Parameters:

	result (pb.TFSResult) – The result of the sampling function.

	Returns:

	The computed potential scale reduction factors.

	Return type:

	pd.Series

	
get_chains(result: _pta_python_binaries.TFSResult) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Extract the simulated chains from a given result.

	Parameters:

	result (pb.TFSResult) – The result of the native sampling function.

	Returns:

	The simulated chains.

	Return type:

	np.ndarray

	
get_initial_points(num_points: int [https://docs.python.org/3/library/functions.html#int]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Gets initial points for sampling reaction energies.

	Parameters:

	num_points (int [https://docs.python.org/3/library/functions.html#int]) – Number of initial points to generate.

	Returns:

	Array containing the initial points.

	Return type:

	np.ndarray

	
class pta.sampling.tfs.FreeEnergiesSamplingResult(samples: pandas.DataFrame, psrf: pandas.Series, orthants: pandas.DataFrame, basis_samples: pandas.DataFrame = None, chains: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] = None)

	Bases: pta.sampling.commons.SamplingResult

Encapsulates the result of sampling reaction energies.

	Parameters:

	
	samples (pd.DataFrame) – Data frame containing the free energy samples.

	psrf (pd.Series) – The Potential Scale Reduction Factors of each variable.

	orthants (pd.DataFrame) – Data frame containing the signs of the reversible reactions for each orthants.
Contains an additional column (“weight”) describing the weight of the orthant.

	basis_samples (pd.DataFrame, optional) – The samples in the basis.

	chains (np.ndarray, optional) – The simulated chains.

	
property orthants: pandas.DataFrame

	Gets a data frame containing the sampled orthants. Contains an additional
column (“weight”) describing the weight of the orthant.

	
pta.sampling.tfs.sample_drg(model: TFSModel, num_samples: int [https://docs.python.org/3/library/functions.html#int] = default_num_samples, num_direction_samples: int [https://docs.python.org/3/library/functions.html#int] = default_num_samples, max_steps: int [https://docs.python.org/3/library/functions.html#int] = -1, max_psrf: float [https://docs.python.org/3/library/functions.html#float] = default_max_psrf, num_chains: int [https://docs.python.org/3/library/functions.html#int] = -1, initial_points: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] = None, num_initial_steps: int [https://docs.python.org/3/library/functions.html#int] = -1, feasibility_cache_size: int [https://docs.python.org/3/library/functions.html#int] = tfs_default_feasibility_cache_size, min_rel_region_length: float [https://docs.python.org/3/library/functions.html#float] = tfs_default_min_rel_region_length, max_threads: int [https://docs.python.org/3/library/functions.html#int] = default_max_threads, convergence_manager: pta.sampling.convergence_manager.ConvergenceManager = None) → FreeEnergiesSamplingResult

	Sample reaction energies under steady state flux constraints in the given model.

	Parameters:

	
	model (TFSModel) – The model to sample.

	num_samples (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of samples to draw.

	num_direction_samples (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of orthant samples to collect.

	max_steps (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum number fo steps to simulate.

	max_psrf (float [https://docs.python.org/3/library/functions.html#float], optional) – Maximum value of the PSRFs for convergence.

	num_chains (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of chains to simulate.

	initial_points (np.ndarray, optional) – The initial points for the chains.

	num_initial_steps (int [https://docs.python.org/3/library/functions.html#int], optional) – Initial chains length.

	feasibility_cache_size (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum size of the cache storing the feasibility of the orthants encountered
during the random walk.

	min_rel_region_length (float [https://docs.python.org/3/library/functions.html#float], optional) – Minimum length (relative to the length of the entire ray) of a segment in order
to consider it for sampling.

	max_threads (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum number of parallel threads to use.

	convergence_manager (ConvergenceManager, optional) – The object to use to monitor and improve convergence.

	Returns:

	The sampling result.

	Return type:

	FreeEnergiesSamplingResult

	Raises:

	SamplingException – If sampling fails.

	
pta.sampling.tfs.sample_log_conc_from_drg(thermodynamic_space: pta.thermodynamic_space.ThermodynamicSpace, drg_samples: pandas.DataFrame, min_eigenvalue: float [https://docs.python.org/3/library/functions.html#float] = default_min_eigenvalue_tds_basis) → pandas.DataFrame

	Sample the natural logarithm of the metabolite concentrations conditioned on
samples of free energies. This function draws one sample for each sample of reaction
energies.

	Parameters:

	
	thermodynamic_space (ThermodynamicSpace) – The thermodynamic space of the network.

	drg_samples (pd.DataFrame) – Data frame containing the samples of reaction energies.

	min_eigenvalue (float [https://docs.python.org/3/library/functions.html#float], optional) – Minimum eigenvalue to keep when performing the truncated SVD of the covariance
of the conditional probability.

	Returns:

	Data frame containing the log-concentration samples.

	Return type:

	pd.DataFrame

	
pta.sampling.tfs.sample_drg0_from_drg(thermodynamic_space: pta.thermodynamic_space.ThermodynamicSpace, drg_samples: pandas.DataFrame, min_eigenvalue: float [https://docs.python.org/3/library/functions.html#float] = default_min_eigenvalue_tds_basis) → pandas.DataFrame

	Sample standard reaction energies conditioned on samples of reaction energies.
This function draws one sample for each sample of reaction energies.

	Parameters:

	
	thermodynamic_space (ThermodynamicSpace) – The thermodynamic space of the network.

	drg_samples (pd.DataFrame) – Data frame containing the samples of reaction energies.

	min_eigenvalue (float [https://docs.python.org/3/library/functions.html#float], optional) – Minimum eigenvalue to keep when performing the truncated SVD of the covariance
of the conditional probability.

	Returns:

	Data frame containing the standard reaction energy samples.

	Return type:

	pd.DataFrame

	
pta.sampling.tfs.sample_fluxes_from_drg(model: cobra.Model, drg_samples: pandas.DataFrame, orthants: pandas.DataFrame, num_approx_samples: int [https://docs.python.org/3/library/functions.html#int] = default_num_samples) → pandas.DataFrame

	Sample the flux space using the samples of orthant of reaction energies and
orthants as prior. For each unique orthant implied by the reaction energy samples,
this function draws a number of uniform flux samples proportional to the probability
of the orthant in the thermodynamic space.

	Parameters:

	
	model (cobra.Model) – cobrapy model describing the flux space.

	drg_samples (pd.DataFrame) – The input reaction energy samples.

	orthants (pd.DataFrame) – Data frame containing the sampled orthants and their weights.

	num_approx_samples (int [https://docs.python.org/3/library/functions.html#int], optional) – Approximate number of samples to draw.

	Returns:

	Data frame containing the flux samples.

	Return type:

	pd.DataFrame

 7.1.1.2.1.5. pta.sampling.uniform

7.1.1.2.1.5. pta.sampling.uniform

Uniform sampling of the flux space of a metabolic network.

7.1.1.2.1.5.1. Module Contents

	
class pta.sampling.uniform.UniformSamplingModel(polytope: PolyRound.api.Polytope, reaction_ids: List[str [https://docs.python.org/3/library/stdtypes.html#str]])

	Bases: pta.sampling.primitives.FluxSpaceSamplingModel

Object holding the information necessary to run uniform sampling on a flux space.

	Parameters:

	
	polytope (Polytope) – Polytope object describing the flux space.

	reaction_ids (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Identifiers of the reactions in the flux space.

	
classmethod from_cobrapy_model(model: cobra.Model, infinity_flux_bound: float [https://docs.python.org/3/library/functions.html#float] = default_flux_bound) → UniformSamplingModel

	Builds a uniform sampler model from a cobrapy model.

	Parameters:

	
	model (cobra.Model) – The input cobra model.

	infinity_flux_bound (float [https://docs.python.org/3/library/functions.html#float], optional) – Default bound to use for unbounded fluxes.

	Returns:

	The constructed model.

	Return type:

	UniformSamplingModel

	
simulate(settings: _pta_python_binaries.SamplerSettings, initial_points: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], directions_transform: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Run the sampler with the given parameters.

	Parameters:

	
	settings (pb.SamplerSettings) – Sampling settings.

	initial_points (np.ndarray) – The initial points for the chains.

	directions_transform (np.ndarray) – The transform for the directions sampler.

	
compute_psrf(result: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → pandas.Series

	Compute the potential scale reduction factors for the variables of interest
on a given set of chains.

	Parameters:

	result (np.ndarray) – The result of the sampling function.

	Returns:

	The computed potential scale reduction factors.

	Return type:

	pd.Series

	
get_chains(result: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Extract the simulated chains from a given result.

	Parameters:

	result (np.ndarray) – The result of the native sampling function.

	Returns:

	The simulated chains.

	Return type:

	np.ndarray

	
pta.sampling.uniform.sample_flux_space_uniform(model: Union[cobra.Model, UniformSamplingModel], num_samples: int [https://docs.python.org/3/library/functions.html#int] = default_num_samples, max_steps: int [https://docs.python.org/3/library/functions.html#int] = -1, max_psrf: float [https://docs.python.org/3/library/functions.html#float] = default_max_psrf, num_chains: int [https://docs.python.org/3/library/functions.html#int] = -1, initial_points: numpy.array = None, num_initial_steps: int [https://docs.python.org/3/library/functions.html#int] = -1, max_threads: int [https://docs.python.org/3/library/functions.html#int] = default_max_threads, convergence_manager: pta.sampling.convergence_manager.ConvergenceManager = None) → pta.sampling.commons.SamplingResult

	Sample steady state fluxes in the given model. The sampler run until either
max_steps or max_psrf is reached.

	Parameters:

	
	model (Union[cobra.Model, UniformSamplingModel]) – The model to sample.

	num_samples (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of samples to draw.

	max_steps (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum number fo steps to simulate.

	max_psrf (float [https://docs.python.org/3/library/functions.html#float], optional) – Maximum value of the PSRFs for convergence.

	num_chains (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of chains to simulate.

	initial_points (np.array, optional) – The initial points for the chains.

	num_initial_steps (int [https://docs.python.org/3/library/functions.html#int], optional) – Initial chains length.

	max_threads (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum number of parallel threads to use.

	convergence_manager (ConvergenceManager, optional) – The object to use to monitor and improve convergence.

	Returns:

	The sampling result.

	Return type:

	SamplingResult

	Raises:

	SamplingException – If sampling fails.

 7.1.2.1. pta.commons

7.1.2.1. pta.commons

Common definitions used in the PTA package.

7.1.2.1.1. Module Contents

	
pta.commons.Q

	Type used for describing quantities.

 7.1.2.2. pta.concentrations_prior

7.1.2.2. pta.concentrations_prior

Definition of the prior distribution of metabolite concentrations.

7.1.2.2.1. Module Contents

	
class pta.concentrations_prior.ConcentrationsPrior(metabolite_distributions: Dict[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]], Any] = None, compartment_distributions: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any] = None, default_distribution: Any = default_log_conc)

	Manages prior distributions of concentrations for specific metabolites or
compartments. This class provides a distribution for the concentration of any
metabolite using (depending on the availability) (1) the distribution for the
metabolite itself, (2) the default distribution of the compartment or (3) a default
distribution.

Internally, metabolites are stored and accessed MetaNetX compound IDs or, when the
compound is not recognized, by metabolite name.

	Parameters:

	
	metabolite_distributions (Dict[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]], Any], optional) – Mapping from metabolites to their prior. Metabolites are specified as a tuple of
metabolite ID and compartment ID.

	compartment_distributions (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any], optional) – Mapping from compartment IDs to the prior of the concentration for the
compartment. This prior is used for compounds for which no explicit prior is
given.

	default_distribution (Any, optional) – Prior distribution to use for metabolites and compartments for which no prior is
specified.

	
property metabolite_distributions: Dict[Tuple[Any, str [https://docs.python.org/3/library/stdtypes.html#str]], Any]

	Gets the prior concentrations for specific metabolites. If the distributions
are modified through this property, update_identifiers() should be called to
make sure that compounds are identified correctly across different
namespaces.

	
property compartment_distributions: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	Gets the prior concentrations for specific compartments.

	
property default_distribution

	Gets the default prior for concentrations.

	
static load(prior_file: Union[pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], str [https://docs.python.org/3/library/stdtypes.html#str]]) → ConcentrationsPrior

	Loads the concentration priors from a .csv file.

	Parameters:

	prior_file (Union[Path, str [https://docs.python.org/3/library/stdtypes.html#str]]) – Path to the file containing the parameter values or name of a builtin
priors set (any file present in data/concentration_priors/, e.g.
‘ecoli_M9_ac’).

	Returns:

	The loaded ConcentrationPrior object.

	Return type:

	ConcentrationsPrior

	
save(prior_file: Union[pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], str [https://docs.python.org/3/library/stdtypes.html#str]])

	Saves the concentration priors to a .csv file.

	Parameters:

	prior_file (Union[Path, str [https://docs.python.org/3/library/stdtypes.html#str]]) – Path to the destination file.

	
add(other: ConcentrationsPrior, overwrite_metabolite_priors: bool [https://docs.python.org/3/library/functions.html#bool] = True, overwrite_compartment_priors: bool [https://docs.python.org/3/library/functions.html#bool] = True, overwrite_default_prior: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Adds the distributions from another prior to this object.

	Parameters:

	
	other (ConcentrationsPrior) – The concentrations prior from which the distributions have to be copied.

	overwrite_metabolite_priors (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies whether, in case of duplicates, metabolite distributions in this
object should be overwritten or not.

	overwrite_compartment_priors (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies whether, in case of duplicates, compartment distributions in this
object should be overwritten or not.

	overwrite_default_prior (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies whether the default distribution in this object should be
overwritten or not.

	
get(metabolite: str [https://docs.python.org/3/library/stdtypes.html#str], compartment: str [https://docs.python.org/3/library/stdtypes.html#str]) → Any

	Gets the distribution for the concentration of a given compound. This uses
(depending on the availability) (1) the distribution for the compound itself,
(2) the default distribution of the compartment or (3) a default distribution.

	Parameters:

	
	metabolite (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier (in any namespace supported by eQuilibrator) of the compound.

	compartment (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier of the compartment.

	Returns:

	Distribution of the concentration of the specified compound.

	Return type:

	Any

	
update_identifiers()

	Updates the internal representation of the compound identifiers.

When possible, this class uses MetaNetX identifiers to represent
compounds. This has the advantage that priors can be created and accessed using
different namespaces. This function should be called whenever
metabolite_distributions is modified.

 7.1.2.3. pta.constants

7.1.2.3. pta.constants

Constants used in tha PTA package.

7.1.2.3.1. Module Contents

	
pta.constants.default_min_eigenvalue_tds_basis = 0.001

	Default minimum eigenvalue for vector of the basis of the thermodynamic space.

	
pta.constants.default_log_conc

	Default distribution of metabolite concentrations.

	
pta.constants.default_flux_bound = 1000

	Default magnitude of lower/upper bounds of fluxes.

	
pta.constants.default_confidence_level = 0.95

	Default confidence level for PMO problems and TFS

	
pta.constants.default_min_drg = 0.1

	Default minimum DrG magnitude for PMO problems and TFS

	
pta.constants.default_max_drg = 1000

	Default maximum DrG magnitude for PMO problems and TFS

	
pta.constants.non_intracellular_compartment_ids = ['e', 'p']

	Identifiers of non-intracellular compartments.

	
pta.constants.default_theta_z = 1.0

	Default threshold on the z-score to consider a predicted value an anomaly.

	
pta.constants.default_theta_s = 0.1

	Default threshold on the shadow price to consider a reaction a strong thermodynamic
constrain.

	
pta.constants.default_max_non_intracellular_conc_mM = 10

	Default threshold on the concentration to consider a predicted concentration an
anomaly.

	
pta.constants.default_min_chains = 4

	Minimum number of chains to use by default.

	
pta.constants.default_num_samples = 1000

	Default number of samples to store.

	
pta.constants.us_steps_multiplier = 64

	Coefficient for the number of steps sampling a flux space.

	
pta.constants.tfs_steps_multiplier = 100

	Coefficient for the number of steps sampling a thermodynamic space.

	
pta.constants.tfs_default_feasibility_cache_size = 10000

	Size of the cache storing whether encountered orthants are feasible or not.

	
pta.constants.tfs_default_min_rel_region_length = 1e-06

	Minimum relative size for an orthant to be considered during Hit-and-Run.

	
pta.constants.default_max_psrf = 1.1

	Default treshold on the Potential Scale Reduction Factors (PSRFs).

	
pta.constants.default_max_threads

	

	
pta.constants.min_samples_per_chain = 100

	Minimum number of samples that must be drawn from each chain in order to obtain a
meaningful PSRF score.

 7.1.2.4. pta.flux_space

7.1.2.4. pta.flux_space

Description of the flux space of a metabolic network.

7.1.2.4.1. Module Contents

	
class pta.flux_space.FluxSpace(S: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], lb: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], ub: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], reaction_ids: List[str [https://docs.python.org/3/library/stdtypes.html#str]], metabolite_ids: List[str [https://docs.python.org/3/library/stdtypes.html#str]])

	Description of the flux space of a metabolic network.

	Parameters:

	
	S (np.ndarray) – Stoichiometric matrix of the network.

	lb (np.ndarray) – Vector of lower bounds on the reaction fluxes.

	ub (np.ndarray) – Vector of upper bounds on the reaction fluxes.

	reaction_ids (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Identifiers of the reactions in the network.

	metabolite_ids (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Identifiers of the metabolites in the network.

	
property S: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Gets the stoichiometric matrix of the network.

	
property lb: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Gets the vector of lower bounds on the reaction fluxes.

	
property ub: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Gets the vector of upper bounds on the reaction fluxes.

	
property reaction_ids: List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Gets the IDs of the reactions in the flux space.

	
property metabolite_ids: List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Gets the IDs of the metabolites in the flux space.

	
property n_metabolites: int [https://docs.python.org/3/library/functions.html#int]

	Gets the number of metabolites in the network.

	
property n_reactions: int [https://docs.python.org/3/library/functions.html#int]

	Gets the number of reactions in the network.

	
property n_reversible_reactions: int [https://docs.python.org/3/library/functions.html#int]

	Gets the number of reversible reactions in the network.

	
copy() → FluxSpace

	Create a copy of this object.

	Returns:

	A copy of this object.

	Return type:

	FluxSpace

	
static from_cobrapy_model(model: cobra.Model) → FluxSpace

	Creates an instance of this class from a cobrapy model.

	Parameters:

	model (cobra.Model) – The input model.

	Returns:

	The constructed object.

	Return type:

	FluxSpace

	
class pta.flux_space.FluxSpaceBasis(flux_space: FluxSpace)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Full-dimensional basis of the flux space. The parametrization is automatically
rounded using PolyRound.

	
property G: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Gets the left-hand side of the constraints of the flux space.

	
property h: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Gets the right-hand side of the constraints of the flux space.

	
property to_fluxes_transform: Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	Gets the transform from a point in the model to a point in the flux space.

	
property dimensionality: int [https://docs.python.org/3/library/functions.html#int]

	Gets the dimensionality of the flux space.

 7.1.2.5. pta.model_assessment

7.1.2.5. pta.model_assessment

Methods for the thermodynamic assessment of a metabolic network.

7.1.2.5.1. Module Contents

	
class pta.model_assessment.StructuralAssessment(model: cobra.Model, biomass_id: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, atpm_id: str [https://docs.python.org/3/library/stdtypes.html#str] = 'ATPM')

	This class is used to find thermodynamic inconsistencies in the definition of the
network that make the model infeasible. Inconsistencies arise when flux constraints
(steady state and irreversibilities) prevent any thermodynamically feasible non-zero
solution. These inconsistencies occur with any assignment of Gibbs free energies.

	Parameters:

	
	model (cobra.Model) – The target model.

	biomass_id (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – ID of the biomass reactions. If None, the method will try to find it
automatically.

	atpm_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – ID of the ATP maintenance reaction.

	
property forced_internal_cycles: List[List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Gets a list of all the forced internal cycles of the network, i.e. the
internal cycles that must be active in any non-zero flux solution and
thus make the model thermodynamically inconsistent.

	
summary()

	Print a summary of the structural assessment.

	
autoresolve(model: cobra.Model, default_bound: float [https://docs.python.org/3/library/functions.html#float] = default_flux_bound)

	Attempt to automatically resolve thermodynamic inconsistencies. This method
removes all reactions involved in dead-end cycles (internal cycles that
exchange flux with the rest of the network through a single metabolite) and
makes all the reactions in the remaining cycles reversible. While this method
should always resolve all inconsistencies, it is still recommended to inspect
the inconsistencies and the curated model manually to verify that the model
behave as expected. The output of the curation can be seen by enabling logging
level INFO.

	Parameters:

	
	model (cobra.Model) – The model in which the curation actions must be applied. This can be the
model on which the assessment was run or a similar model. This is useful for
cases where assessment is run on a condition specific model but actions
should be applied to a base model.

	default_bound (float [https://docs.python.org/3/library/functions.html#float], optional) – Default bound to use for unconstrained reactions.

	
class pta.model_assessment.QuantitativeAssessment(pmo_problem: pta.pmo.PmoProblem, z_score_threshold: float [https://docs.python.org/3/library/functions.html#float] = default_theta_z, shadow_price_threshold: float [https://docs.python.org/3/library/functions.html#float] = default_theta_s, max_extracellular_conc: pta.commons.Q = None)

	Quantitative thermodynamic assessment of a metabolic network. This process
combines thermodynamic data and flux constraints to identify parts of the network
where the mechanism in the model is possibly incorrect.

	Parameters:

	
	pmo_problem (PmoProblem) – A solved PMO problem.

	z_score_threshold (float [https://docs.python.org/3/library/functions.html#float], optional) – Threshold on the z-score to consider a predicted value an anomaly.

	shadow_price_threshold (float [https://docs.python.org/3/library/functions.html#float], optional) – Threshold on the shadow price to consider a reaction a strong thermodynamic
constrain.

	max_extracellular_conc (Q, optional) – Threshold on the concentration to consider a predicted concentration an anomaly.

	
property metabolites_df: pandas.DataFrame

	Gets a data frame with the metabolite-related quantities.

	
property reactions_df: pandas.DataFrame

	Gets a data frame with the reaction-related quantities.

	
property theta_z: float [https://docs.python.org/3/library/functions.html#float]

	Gets the mimimum absolute z-score used to classify a metabolite
concentration as anomaly.

	
property theta_s: float [https://docs.python.org/3/library/functions.html#float]

	Gets the mimimum absolute shadow price to flag a constraint.

	
property max_ex_concentration: float [https://docs.python.org/3/library/functions.html#float]

	Gets the minimum concentration used to classify a non-intracellular
metabolite concentration as anomaly.

	
summary()

	Print a summary of the quantitative assessment.

	
pta.model_assessment.prepare_for_pta(model: cobra.Model, biomass_id: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, atpm_id: str [https://docs.python.org/3/library/stdtypes.html#str] = 'ATPM', default_bound: float [https://docs.python.org/3/library/functions.html#float] = default_flux_bound, autoresolve_inconsistencies: bool [https://docs.python.org/3/library/functions.html#bool] = True, remove_blocked_reactions: bool [https://docs.python.org/3/library/functions.html#bool] = True, tighten_bounds: bool [https://docs.python.org/3/library/functions.html#bool] = True, prevent_loops: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Attempt to automatically prepare a model for use in PTA.

This method performs three actions:

	Runs structural assessment on the model and attempts to autoresolve possible
inconsistencies.

	Removes all blocked reactions from the model.

	Runs FVA to tighten the flux bounds of each reaction.

	Parameters:

	
	model (cobra.Model) – The target model.

	biomass_id (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – ID of the biomass reactions. If None, the method will try to find it
automatically.

	atpm_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – ID of the ATP maintenance reaction.

	default_bound (float [https://docs.python.org/3/library/functions.html#float], optional) – Default bound to use for unconstrained reactions.

	autoresolve_inconsistencies (bool [https://docs.python.org/3/library/functions.html#bool], optional) – True if the method should attempt to automatically resolve inconsistencies,
false otherwise. By default True.

	remove_blocked_reactions (bool [https://docs.python.org/3/library/functions.html#bool], optional) – True if the method should remove blocked reactions, false otherwise. By default
True.

	tighten_bounds (bool [https://docs.python.org/3/library/functions.html#bool], optional) – True if the method should restrict the flux bounds with FVA, false otherwise. By
default True.

 7.1.2.6. pta.pmo

7.1.2.6. pta.pmo

Construction and solution of Probabilistic Metabolic Optimization (PMO) problems.

7.1.2.6.1. Module Contents

	
class pta.pmo.PmoProblemPool(num_processes: Optional[int [https://docs.python.org/3/library/functions.html#int]], *argv)

	Creation of a process pool for solving multiple PMO problems on the same model.

	
map(fn: Callable[[PmoProblem, Any], Any], inputs: Iterable[Any]) → List[Any]

	Execute a function on each input element.

This is the same as the regular map function, except that it executes in
parallel on the available workers.

	Parameters:

	
	fn (Callable[[PmoProblem, Any], Any]) – Function to be applied to each element.

	inputs (Iterable[Any]) – An iterable containing the input elements.

	Returns:

	A list containing the result of applying the function to each input element.

	Return type:

	List[Any]

	
close()

	Wait for all jobs to be done and closes the pool.

	
class pta.pmo.PmoProblem(network: Union[cobra.Model, pta.flux_space.FluxSpace], thermodynamic_space: pta.thermodynamic_space.ThermodynamicSpace, thermodynamic_space_basis: pta.thermodynamic_space.ThermodynamicSpaceBasis = None, objective: Callable[[PmoProblem], cvxpy.problems.objective.Objective] = None, confidence_level: float [https://docs.python.org/3/library/functions.html#float] = default_confidence_level, min_drg: float [https://docs.python.org/3/library/functions.html#float] = default_min_drg, max_drg: float [https://docs.python.org/3/library/functions.html#float] = default_max_drg, solver: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, solver_options: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None)

	Construction and solution of a PMO problem.

	Parameters:

	
	network (Union[cobra.Model, FluxSpace]) – Cobra model or FluxSpace object describing the flux space of the metabolic
network.

	thermodynamic_space (ThermodynamicSpace) – Description of the thermodynamic space of the metabolic network.

	thermodynamic_space_basis (ThermodynamicSpaceBasis, optional) – A basis for the thermodynamic space. If specified, m will be defined in this
basis.

	objective (Callable[[PmoProblem], cp.problems.objective.Objective], optional) – A function used to set the optimization objective. By default the probability of
in thermodynamic space is maximized.

	confidence_level (float [https://docs.python.org/3/library/functions.html#float], optional) – Confidence level (in the range \([0.0, 1.0[\)) on the joint of the
thermodynamic variables, by default 0.95.

	min_drg (float [https://docs.python.org/3/library/functions.html#float], optional) – Minimum magnitude for the reaction energy of each reaction, by default 1e-1.

	max_drg (float [https://docs.python.org/3/library/functions.html#float], optional) – Maximum magnitude for the reaction energy of each reaction, by default 1000.

	solver (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Name of the solver to use, this can be any of the solvers supported by CVXPY, by
default None.

	solver_options (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Dictionary specifying additional options for the solver.

	
property confidence_level

	Gets the confidence level on the thermodynamic space.

	
property min_drg: float [https://docs.python.org/3/library/functions.html#float]

	Gets the minimum absolute value of DrG allowed in the model.

	
property max_drg: float [https://docs.python.org/3/library/functions.html#float]

	Gets the maximum absolute value of DrG in the model.

	
property flux_scale: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Gets the vector of scaling factors for the scaled fluxes.

	
property objective: Optional[Callable[[PmoProblem], cvxpy.problems.objective.Objective]]

	Gets the function that constructs the PMO objective.

	
property vs: cvxpy.Variable

	Gets the CVXPY variable representing scaled reaction fluxes.

	
property m: cvxpy.Variable

	Gets the CVXPY variable representing the thermodynamic space in the
minimal basis.

	
property d: cvxpy.Variable

	Gets the CVXPY variable representing reaction directions.

	
property v: numpy.array

	Gets the predicted reaction fluxes.

	
property log_c: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Gets the predicted log-concentrations. Can be none if concentrations are not
represented explicitely.

	
property drg0: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Gets the predicted standard reaction energies. Can be none if standard
reaction energies are not represented explicitely.

	
property drg: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Gets the predicted reaction energies. Can be none if reaction energies are
not represented explicitely.

	
property solver: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Gets the selected solver.

	
property solver_options: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	Gets the solver options.

	
property F: pta.flux_space.FluxSpace

	Gets the flux space associated with the PMO problem.

	
property T: pta.thermodynamic_space.ThermodynamicSpace

	Gets the thermodynamic space associated with the PMO problem.

	
property B: pta.thermodynamic_space.ThermodynamicSpaceBasis

	Gets the thermodynamic space basis associated with the PMO problem.

	
property flux_lb_constraint: cvxpy.constraints.constraint.Constraint

	Gets the lower bound constraint for fluxes.

	
property flux_ub_constraint: cvxpy.constraints.constraint.Constraint

	Gets the upper bound constraint for fluxes.

	
property steady_state_constraint: cvxpy.constraints.constraint.Constraint

	Gets the steady state constraint.

	
property confidence_constraint: cvxpy.constraints.constraint.Constraint

	Gets the constraint for the selected confidence level.

	
property sign_constraints: cvxpy.constraints.constraint.Constraint

	Gets the reaction direction constraints. The constraints at indices
0 and 1 are constraints on the reaction energies, while 2 and 3 are
constraints on the fluxes.

	
solve(verbose=False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Solves the PMO problem. The result of the optimization is stored inside the
class.

	Parameters:

	verbose (bool [https://docs.python.org/3/library/functions.html#bool], optional) – True is the solver log should be printed to the console, false otherwise. By
default False.

	Returns:

	The CVXPY result of the optimization.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
rebuild_for_directions(directions: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → PmoProblem

	Construct a copy of this PMO problem constrained to the given reaction
directions.

	Parameters:

	directions (np.ndarray) – Vector containing the directions (0: backward, 1: forward) of the reactions
in T.

	Returns:

	A copy of this problem, constrained to the given directions.

	Return type:

	PmoProblem

 7.1.2.7. pta.thermodynamic_space

7.1.2.7. pta.thermodynamic_space

Description of the space of thermodynamics-related quantities of a metabolic network.

7.1.2.7.1. Module Contents

	
class pta.thermodynamic_space.ThermodynamicSpace(S_constraints: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], reaction_ids: List[str [https://docs.python.org/3/library/stdtypes.html#str]], metabolites: List[enkie.Metabolite], parameters: enkie.CompartmentParameters = None, concentrations: pta.concentrations_prior.ConcentrationsPrior = None, estimator: enkie.estimators.GibbsEstimatorInterface = None, dfg0_estimate: Optional[Tuple[pta.commons.Q, pta.commons.Q]] = None)

	Construction, description and manipulation of the thermodynamic space of
a metabolic network.

	Parameters:

	
	S_constraints (np.ndarray) – Stoichiometric matrix of the reactions covered by thermodynamic constraints.

	reaction_ids (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Identifiers of the reactions covered by thermodynamic constraints.

	metabolites (List[Metabolite]) – List describing the metabolites in the network.

	parameters (CompartmentParameters, optional) – The physiological parameters (pH, ionic strength, …) of each compartment.

	concentrations (ConcentrationsPrior, optional) – Prior distributions for the metabolite concentrations.

	estimator (GibbsEstimatorInterface, optional) – Object used to estimate Gibbs free energies.

	dfg0_estimate (Optional[Tuple[Q, Q]], optional) – Estimate of formation energies (mean and a square root of the covariance matrix)
in case the user wants to specify them manually. This is only used if
estimator is None.

	
property dfg0_prime_mean: pta.commons.Q

	Gets the mean of the corrected standard formation energies.

	
property dfg0_prime_cov: pta.commons.Q

	Gets the covariance of the corrected standard formation energies.

	
property dfg0_prime_cov_sqrt: pta.commons.Q

	Gets a square root of the covariance of the corrected standard
formation energies.

	
property drg0_prime_mean: pta.commons.Q

	Gets the mean of the corrected standard reaction energies.

	
property drg0_prime_cov: pta.commons.Q

	Gets the covariance of the corrected standard reaction energies.

	
property drg0_prime_cov_sqrt: pta.commons.Q

	Gets a square root of the covariance of the corrected standard
reaction energies.

	
property log_conc_mean

	Gets the mean of the log-concentrations.

	
property log_conc_cov

	Gets the covariance of the log-concentrations.

	
property dfg_prime_mean

	Gets the mean of the formation energies.

	
property dfg_prime_cov

	Gets the covariance of the formation energies.

	
property drg_prime_mean

	Gets the mean of the reaction energies.

	
property drg_prime_cov

	Gets the covariance of the reaction energies.

	
property parameters: enkie.CompartmentParameters

	Gets the compartment parameters of the system.

	
property metabolites: List[enkie.Metabolite]

	Gets the list of metabolites in the thermodynamic space.

	
property S_constraints: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Gets stoichiometric matrix of the reactions with thermodynamic
constraints.

	
property metabolite_ids: List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Gets the IDs of the metabolites in the thermodynamic space.

	
property reaction_ids: List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Gets the IDs of the reactions with thermodynamic constraints.

	
subspace(reaction_ids: Set[str [https://docs.python.org/3/library/stdtypes.html#str]], metabolite_ids: Set[str [https://docs.python.org/3/library/stdtypes.html#str]]) → ThermodynamicSpace

	

	
static from_cobrapy_model(model: cobra.Model, metabolites_namespace: str [https://docs.python.org/3/library/stdtypes.html#str] = None, constrained_rxns: Union[List[int [https://docs.python.org/3/library/functions.html#int]], List[str [https://docs.python.org/3/library/stdtypes.html#str]], cobra.DictList] = None, estimator: enkie.estimators.GibbsEstimatorInterface = None, parameters: enkie.CompartmentParameters = None, concentrations: pta.concentrations_prior.ConcentrationsPrior = None, dfg0_estimate: Optional[Tuple[pta.commons.Q, pta.commons.Q]] = None) → ThermodynamicSpace

	Constructs a thermodynamic space from a cobrapy model.

	Parameters:

	
	model (cobra.Model) – Cobra model describing the metabolic network.

	metabolites_namespace (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Specifies the name to use when reading metabolite identifiers from the SBML
model annotations.

	constrained_rxns (Union[List[int [https://docs.python.org/3/library/functions.html#int]], List[str [https://docs.python.org/3/library/stdtypes.html#str]], cobra.DictList], optional) – The reactions that should be modeled with thermodynamic constraints. Usually
this list should contain all reactions except biomass and boundary
reactions. The list can contain either the reactions themselves, their
indices or they identifiers.

	estimator (GibbsEstimatorInterface, optional) – Object used to estimate Gibbs free energies.

	parameters (CompartmentParameters, optional) – The physiological parameters (pH, ionic strength, …) of each compartment.

	concentrations (ConcentrationsPrior, optional) – Prior distributions for the metabolite concentrations.

	Returns:

	The thermodynamic space for the specified model.

	Return type:

	ThermodynamicSpace

	
class pta.thermodynamic_space.ThermodynamicSpaceBasis(thermodynamic_space: ThermodynamicSpace, explicit_log_conc: bool [https://docs.python.org/3/library/functions.html#bool] = True, explicit_drg0: bool [https://docs.python.org/3/library/functions.html#bool] = True, explicit_drg: bool [https://docs.python.org/3/library/functions.html#bool] = True, min_eigenvalue: float [https://docs.python.org/3/library/functions.html#float] = default_min_eigenvalue_tds_basis)

	Full-dimensional basis of the thermodynamic space. It is possible to make only
selected variables explicit in the basis, reducing its dimensionality.

	Parameters:

	
	thermodynamic_space (ThermodynamicSpace) – The target thermodynamic space.

	explicit_log_conc (bool [https://docs.python.org/3/library/functions.html#bool], optional) – True if log-concentrations should be represented explicitly in the basis, false
otherwise. By default True.

	explicit_drg0 (bool [https://docs.python.org/3/library/functions.html#bool], optional) – True if standard reaction energies should be represented explicitly in the
basis, false otherwise. By default True.

	explicit_drg (bool [https://docs.python.org/3/library/functions.html#bool], optional) – True if reaction energies should be represented explicitly in the basis, false
otherwise. By default True.

	min_eigenvalue (float [https://docs.python.org/3/library/functions.html#float], optional) – Minimum eigenvalue of for a vector to be part of the basis.

	
property to_log_conc_transform: Optional[Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]]

	Gets the transformation from this space to log-concentrations. None
if concentrations are not represented explicitly.

	
property to_drg0_transform: Optional[Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]]

	Gets the transformation from this space to DrG’°. None
if standard reaction energies are not represented explicitly.

	
property to_drg_transform: Optional[Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]]

	Gets the transformation from this space to DrG’. None
if reaction energies are not represented explicitly.

	
property to_observables_transform: Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	Gets the transformation from this space to the selected observables.

	
property observables_ranges: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[int [https://docs.python.org/3/library/functions.html#int]]]

	The ranges of the different variables in a vector of observables.

	
property sigmas: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Gets a vector containing the standard deviation of each variable in
the minimal basis.

	
property dimensionality: int [https://docs.python.org/3/library/functions.html#int]

	Gets the dimensionality of the basis.

	
to_log_conc(basis_vars: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Transform a vector or matrix in the basis to a vector or matrix of
log-concentrations.

	Parameters:

	basis_vars (np.ndarray) – The input vector or matrix.

	Returns:

	The transformed vector or matrix. None if concentrations are not
represented explicitly.

	Return type:

	np.ndarray

	
to_drg0(basis_vars: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Transform a vector or matrix in the basis to a vector or matrix of
standard reaction energies.

	Parameters:

	basis_vars (np.ndarray) – The input vector or matrix.

	Returns:

	The transformed vector or matrix. None if standard reaction energies
are not represented explicitly.

	Return type:

	np.ndarray

	
to_drg(basis_vars: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Transform a vector or matrix in the basis to a vector or matrix of
reaction energies.

	Parameters:

	basis_vars (np.ndarray) – The input vector or matrix.

	Returns:

	The transformed vector or matrix. None if reaction energies are not
represented explicitly.

	Return type:

	np.ndarray

 7.1.2.8. pta.utils

7.1.2.8. pta.utils

General utility functions.

7.1.2.8.1. Module Contents

	
pta.utils.WATER_OR_PROTON_IDS

	

	
pta.utils.enable_all_logging(level: int [https://docs.python.org/3/library/functions.html#int] = logging.INFO)

	Enable detailed logging in PTA and its dependencies. This is useful to debug
possible problems.

	Parameters:

	level (int [https://docs.python.org/3/library/functions.html#int], optional) – The desired logging level, by default logging.INFO

	
pta.utils.floor(value: float [https://docs.python.org/3/library/functions.html#float], decimals: int [https://docs.python.org/3/library/functions.html#int] = 0) → float [https://docs.python.org/3/library/functions.html#float]

	Same as math.floor, except that it rounds to a given number of decimals.

	Parameters:

	
	value (float [https://docs.python.org/3/library/functions.html#float]) – Value to round.

	decimals (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of decimals to round to, by default 0.

	Returns:

	The rounded value.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
pta.utils.ceil(value: float [https://docs.python.org/3/library/functions.html#float], decimals: int [https://docs.python.org/3/library/functions.html#int] = 0)

	Same as math.ceil, except that it rounds to a given number of decimals.

	Parameters:

	
	value (float [https://docs.python.org/3/library/functions.html#float]) – Value to round.

	decimals (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of decimals to round to, by default 0.

	Returns:

	The rounded value.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
pta.utils.get_internal_reactions(model: cobra.Model) → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Gets the identifiers of all internal (non boundary) reactions in the model.

	Parameters:

	model (cobra.Model) – The target model.

	Returns:

	List of identifiers.

	Return type:

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
pta.utils.tighten_model_bounds(model: cobra.Model, margin: float [https://docs.python.org/3/library/functions.html#float] = 0.0001, round_to_digits: int [https://docs.python.org/3/library/functions.html#int] = 6, prevent_loops: bool [https://docs.python.org/3/library/functions.html#bool] = False, fva_result: pandas.DataFrame = None)

	Apply FVA to a model to reduce the range of the flux bounds. The FVA result (plus
a margin) is applied to each reaction if it is tighter than the bounds in the model.

	Parameters:

	
	model (cobra.Model) – The model to analyze.

	margin (float [https://docs.python.org/3/library/functions.html#float], optional) – Margin to be applied to the FVA result when the computed bounds are tighter than
the original ones. This avoids overconstraining the model in case of numerical
inaccuracies in the solution. By default 1e-4.

	round_to_digits (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of digits to which tighter bounds should be rounded to. This limits the
range of the coefficients for optimization problems. By default 6.

	prevent_loops (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If no FVA solution is provided, determines whether regular or loopless FVA will
be used.

	fva_result (pd.DataFrame, optional) – Precomputed FVA result. If specified, FVA will not be run again, by default
None.

	
pta.utils.find_blocked_reactions_from_fva_solution(model: cobra.Model, prevent_loops: bool [https://docs.python.org/3/library/functions.html#bool] = False, zero_cutoff: Optional[float [https://docs.python.org/3/library/functions.html#float]] = None, fva_result: pandas.DataFrame = None) → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Similar to cobrapy’s find_blocked_reactions(), but optionally takes a precomputed
FVA solution as input.

	Parameters:

	
	model (cobra.Model) – The model to analyze.

	prevent_loops (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If no FVA solution is provided, determines whether regular or loopless FVA will
be used.

	zero_cutoff (Optional[float [https://docs.python.org/3/library/functions.html#float]], optional) – Flux value which is considered to effectively be zero. The default
is set to use model.tolerance (default None).

	fva_result (pd.DataFrame, optional) – Precomputed FVA result. If specified, FVA will not be run again, by default
None.

	Returns:

	List of identifiers of the blocked reactions.

	Return type:

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
pta.utils.get_candidate_thermodynamic_constraints(model: cobra.Model, metabolites_namespace: str [https://docs.python.org/3/library/stdtypes.html#str] = None, exclude_compartments: List[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Selects reactions in the flux space that are suitable to be used as thermodynamic
constraints. By default this method selects all internal reactions, excluding water
transport all boundary and exchange reactions. Optionally, it can exclude reactions
where at least one metabolite belongs to certain compartments.

	Parameters:

	
	model (Union[FluxSpace, cobra.Model]) – The target model.

	metabolite_interpreter (MetaboliteInterpreter, optional) – Specifies how to parse metabolite identifiers.

	exclude_compartments (List[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – List of identifiers of the compartment to exclude from the candidates.

	ccache (CompoundCache, optional) – eQuilibrator’s CompoundCache object, used to identify compounds using
identifiers from different namespaces. For performance reasons, it is
recommended to use a single instance of CompoundCache for all functions in
PTA.

	Returns:

	The identifiers of the candidate reactions.

	Return type:

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
pta.utils.get_reactions_in_internal_cycles(model: cobra.Model, biomass_name: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, atpm_name: str [https://docs.python.org/3/library/stdtypes.html#str] = 'ATPM') → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Find all the reactions in a model involved in one or more internal cycles.

	Parameters:

	
	model (cobra.Model) – The target model.

	biomass_name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Identifier of the biomass reaction.

	atpm_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Identifier of the ATP maintenance reaction.

	Returns:

	The identifiers of the reactions involved in internal cycles.

	Return type:

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
pta.utils.get_internal_cycles(model: cobra.Model, biomass_name: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, atpm_name: str [https://docs.python.org/3/library/stdtypes.html#str] = 'ATPM') → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Uses efmtool to enumerate all the internal cycles in the network.

	modelcobra.Model
	The target model.

	biomass_nameOptional[str], optional
	Identifier of the biomass reaction.

	atpm_namestr, optional
	Identifier of the ATP maintenance reaction.

	Returns:

	A n-by-e matrix, where e in the number of EFMs and n is the number of reactions,
where each column is an EFM representing an internal cycle.

	Return type:

	np.ndarray

	
pta.utils.to_reactions_idxs(reactions: Union[List[int [https://docs.python.org/3/library/functions.html#int]], List[str [https://docs.python.org/3/library/stdtypes.html#str]], cobra.DictList, List[cobra.Reaction]], model: cobra.Model) → List[int [https://docs.python.org/3/library/functions.html#int]]

	Utility function to obtain a list of reaction indices from different
representations.

	Parameters:

	
	reactions (Union[List[int [https://docs.python.org/3/library/functions.html#int]], List[str [https://docs.python.org/3/library/stdtypes.html#str]], cobra.DictList, List[cobra.Reaction]]) – Input list of reactions. Reactions can be defined through their index in the
model, their identifiers, or with the reactions themselves.

	model (cobra.Model) – The model in which the reactions are defined.

	Returns:

	List of reaction indices.

	Return type:

	List[int [https://docs.python.org/3/library/functions.html#int]]

	Raises:

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – If the list is not of one of the expected formats.

	
pta.utils.to_reactions_ids(reactions: Union[List[int [https://docs.python.org/3/library/functions.html#int]], List[str [https://docs.python.org/3/library/stdtypes.html#str]], cobra.DictList, List[cobra.Reaction]], model: cobra.Model) → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Utility function to obtain a list of reaction identifiers from different
representations.

	Parameters:

	
	reactions (Union[List[int [https://docs.python.org/3/library/functions.html#int]], List[str [https://docs.python.org/3/library/stdtypes.html#str]], cobra.DictList, List[cobra.Reaction]]) – Input list of reactions. Reactions can be defined through their index in the
model, their identifiers, or with the reactions themselves.

	model (cobra.Model) – The model in which the reactions are defined.

	Returns:

	List of reaction identifiers.

	Return type:

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Raises:

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – If the list is not of one of the expected formats.

	
pta.utils.apply_transform(value: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], transform: Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Applies an affine transform to a matrix.

	Parameters:

	
	value (np.ndarray) – The matrix to be transformed.

	transform (Tuple[np.ndarray, np.ndarray]) – Tuple describing the linear (transformation matrix) and affine (translation
vector) of the transform.

	Returns:

	The transformed matrix.

	Return type:

	np.ndarray

	
pta.utils.get_path(path: Union[pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], str [https://docs.python.org/3/library/stdtypes.html#str]]) → pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Gets a Path object from different representations.

	Parameters:

	path (Union[Path, str [https://docs.python.org/3/library/stdtypes.html#str]]) – A Path object or a string describing the path.

	Returns:

	A Path object.

	Return type:

	Path

	Raises:

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – If the type of the input is not supported.

	
pta.utils.covariance_square_root(covariance: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], min_eigenvalue: float [https://docs.python.org/3/library/functions.html#float] = default_min_eigenvalue_tds_basis) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Gets a full-rank square root of a covariance matrix.

	Parameters:

	
	covariance (np.ndarray) – The input covariance matrix.

	min_eigenvalue (float [https://docs.python.org/3/library/functions.html#float], optional) – Minimum eigenvalue to keep during the truncated EVD.

	Returns:

	A full-rank square root of the covariance.

	Return type:

	np.ndarray

	
pta.utils.load_example_model(model_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → cobra.Model

	Load an example SBML model in cobrapy.

	Parameters:

	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the model file (without extension). This can be any of the models in
pta/data/models.

	Returns:

	The loaded model in cobrapy format.

	Return type:

	cobra.Model

	
pta.utils.find_rotation_matrix(x: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], y: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Compute a matrix that rotates the vector x onto vector y (without scaling).

	Parameters:

	
	x (np.ndarray) – The starting vector.

	y (np.ndarray) – The destination vector.

	Returns:

	The computed rotation matrix.

	Return type:

	np.ndarray

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pta	

 	
 	
 pta.commons	

 	
 	
 pta.concentrations_prior	

 	
 	
 pta.constants	

 	
 	
 pta.data	

 	
 	
 pta.data.concentration_priors	

 	
 	
 pta.data.models	

 	
 	
 pta.flux_space	

 	
 	
 pta.model_assessment	

 	
 	
 pta.pmo	

 	
 	
 pta.sampling	

 	
 	
 pta.sampling.commons	

 	
 	
 pta.sampling.convergence_manager	

 	
 	
 pta.sampling.primitives	

 	
 	
 pta.sampling.tfs	

 	
 	
 pta.sampling.uniform	

 	
 	
 pta.thermodynamic_space	

 	
 	
 pta.utils	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add() (pta.concentrations_prior.ConcentrationsPrior method)

 	apply_to_chains() (in module pta.sampling.commons)

 	
 	apply_transform() (in module pta.utils)

 	autoresolve() (pta.model_assessment.StructuralAssessment method)

B

 	
 	B (pta.pmo.PmoProblem property)

 	(pta.sampling.tfs.TFSModel property)

 	
 	basis_samples (pta.sampling.commons.SamplingResult property)

C

 	
 	ceil() (in module pta.utils)

 	chains (pta.sampling.commons.SamplingResult property)

 	check_convergence() (pta.sampling.commons.SamplingResult method)

 	close() (pta.pmo.PmoProblemPool method)

 	compartment_distributions (pta.concentrations_prior.ConcentrationsPrior property)

 	compute_psrf() (pta.sampling.commons.SamplerInterface method)

 	(pta.sampling.tfs.TFSModel method)

 	(pta.sampling.uniform.UniformSamplingModel method)

 	
 	ConcentrationsPrior (class in pta.concentrations_prior)

 	confidence_constraint (pta.pmo.PmoProblem property)

 	confidence_level (pta.pmo.PmoProblem property)

 	confidence_radius (pta.sampling.tfs.TFSModel property)

 	ConvergenceManager (class in pta.sampling.convergence_manager)

 	copy() (pta.flux_space.FluxSpace method)

 	covariance_square_root() (in module pta.utils)

D

 	
 	d (pta.pmo.PmoProblem property)

 	default_confidence_level (in module pta.constants)

 	default_distribution (pta.concentrations_prior.ConcentrationsPrior property)

 	default_flux_bound (in module pta.constants)

 	default_log_conc (in module pta.constants)

 	default_max_drg (in module pta.constants)

 	default_max_non_intracellular_conc_mM (in module pta.constants)

 	default_max_psrf (in module pta.constants)

 	default_max_threads (in module pta.constants)

 	default_min_chains (in module pta.constants)

 	default_min_drg (in module pta.constants)

 	default_min_eigenvalue_tds_basis (in module pta.constants)

 	default_num_samples (in module pta.constants)

 	default_theta_s (in module pta.constants)

 	default_theta_z (in module pta.constants)

 	dfg0_prime_cov (pta.thermodynamic_space.ThermodynamicSpace property)

 	
 	dfg0_prime_cov_sqrt (pta.thermodynamic_space.ThermodynamicSpace property)

 	dfg0_prime_mean (pta.thermodynamic_space.ThermodynamicSpace property)

 	dfg_prime_cov (pta.thermodynamic_space.ThermodynamicSpace property)

 	dfg_prime_mean (pta.thermodynamic_space.ThermodynamicSpace property)

 	dimensionality (pta.flux_space.FluxSpaceBasis property)

 	(pta.sampling.commons.SamplerInterface property)

 	(pta.sampling.primitives.FluxSpaceSamplingModel property)

 	(pta.sampling.tfs.TFSModel property)

 	(pta.thermodynamic_space.ThermodynamicSpaceBasis property)

 	drg (pta.pmo.PmoProblem property)

 	drg0 (pta.pmo.PmoProblem property)

 	drg0_prime_cov (pta.thermodynamic_space.ThermodynamicSpace property)

 	drg0_prime_cov_sqrt (pta.thermodynamic_space.ThermodynamicSpace property)

 	drg0_prime_mean (pta.thermodynamic_space.ThermodynamicSpace property)

 	drg_epsilon (pta.sampling.tfs.TFSModel property)

 	drg_prime_cov (pta.thermodynamic_space.ThermodynamicSpace property)

 	drg_prime_mean (pta.thermodynamic_space.ThermodynamicSpace property)

E

 	
 	enable_all_logging() (in module pta.utils)

F

 	
 	F (pta.pmo.PmoProblem property)

 	(pta.sampling.tfs.TFSModel property)

 	fill_common_sampling_settings() (in module pta.sampling.commons)

 	find_blocked_reactions_from_fva_solution() (in module pta.utils)

 	find_rotation_matrix() (in module pta.utils)

 	floor() (in module pta.utils)

 	flux_lb_constraint (pta.pmo.PmoProblem property)

 	flux_scale (pta.pmo.PmoProblem property)

 	
 	flux_ub_constraint (pta.pmo.PmoProblem property)

 	FluxSpace (class in pta.flux_space)

 	FluxSpaceBasis (class in pta.flux_space)

 	FluxSpaceSamplingModel (class in pta.sampling.primitives)

 	forced_internal_cycles (pta.model_assessment.StructuralAssessment property)

 	FreeEnergiesSamplingResult (class in pta.sampling.tfs)

 	from_cobrapy_model() (pta.flux_space.FluxSpace static method)

 	(pta.sampling.uniform.UniformSamplingModel class method)

 	(pta.thermodynamic_space.ThermodynamicSpace static method)

G

 	
 	G (pta.flux_space.FluxSpaceBasis property)

 	(pta.sampling.primitives.FluxSpaceSamplingModel property)

 	get() (pta.concentrations_prior.ConcentrationsPrior method)

 	get_candidate_thermodynamic_constraints() (in module pta.utils)

 	get_chains() (pta.sampling.commons.SamplerInterface method)

 	(pta.sampling.tfs.TFSModel method)

 	(pta.sampling.uniform.UniformSamplingModel method)

 	
 	get_initial_points() (pta.sampling.primitives.FluxSpaceSamplingModel method)

 	(pta.sampling.tfs.TFSModel method)

 	get_internal_cycles() (in module pta.utils)

 	get_internal_reactions() (in module pta.utils)

 	get_path() (in module pta.utils)

 	get_reactions_in_internal_cycles() (in module pta.utils)

 	get_reversible_reactions_ids_T() (pta.sampling.tfs.TFSModel method)

H

 	
 	h (pta.flux_space.FluxSpaceBasis property)

 	(pta.sampling.primitives.FluxSpaceSamplingModel property)

L

 	
 	lb (pta.flux_space.FluxSpace property)

 	load() (pta.concentrations_prior.ConcentrationsPrior static method)

 	load_example_model() (in module pta.utils)

 	
 	log_c (pta.pmo.PmoProblem property)

 	log_conc_cov (pta.thermodynamic_space.ThermodynamicSpace property)

 	log_conc_mean (pta.thermodynamic_space.ThermodynamicSpace property)

M

 	
 	m (pta.pmo.PmoProblem property)

 	map() (pta.pmo.PmoProblemPool method)

 	max_drg (pta.pmo.PmoProblem property)

 	max_ex_concentration (pta.model_assessment.QuantitativeAssessment property)

 	metabolite_distributions (pta.concentrations_prior.ConcentrationsPrior property)

 	metabolite_ids (pta.flux_space.FluxSpace property)

 	(pta.thermodynamic_space.ThermodynamicSpace property)

 	metabolites (pta.thermodynamic_space.ThermodynamicSpace property)

 	metabolites_df (pta.model_assessment.QuantitativeAssessment property)

 	min_drg (pta.pmo.PmoProblem property)

 	min_samples_per_chain (in module pta.constants)

 	
 module

 	pta

 	pta.commons

 	pta.concentrations_prior

 	pta.constants

 	pta.data

 	pta.data.concentration_priors

 	pta.data.models

 	pta.flux_space

 	pta.model_assessment

 	pta.pmo

 	pta.sampling

 	pta.sampling.commons

 	pta.sampling.convergence_manager

 	pta.sampling.primitives

 	pta.sampling.tfs

 	pta.sampling.uniform

 	pta.thermodynamic_space

 	pta.utils

N

 	
 	n_metabolites (pta.flux_space.FluxSpace property)

 	n_reactions (pta.flux_space.FluxSpace property)

 	
 	n_reversible_reactions (pta.flux_space.FluxSpace property)

 	non_intracellular_compartment_ids (in module pta.constants)

O

 	
 	objective (pta.pmo.PmoProblem property)

 	
 	observables_ranges (pta.thermodynamic_space.ThermodynamicSpaceBasis property)

 	orthants (pta.sampling.tfs.FreeEnergiesSamplingResult property)

P

 	
 	parameters (pta.thermodynamic_space.ThermodynamicSpace property)

 	pmo_args (pta.sampling.tfs.TFSModel property)

 	PmoProblem (class in pta.pmo)

 	PmoProblemPool (class in pta.pmo)

 	prepare_for_pta() (in module pta.model_assessment)

 	psrf (pta.sampling.commons.SamplingResult property)

 	
 pta

 	module

 	
 pta.commons

 	module

 	
 pta.concentrations_prior

 	module

 	
 pta.constants

 	module

 	
 pta.data

 	module

 	
 pta.data.concentration_priors

 	module

 	
 pta.data.models

 	module

 	
 pta.flux_space

 	module

 	
 	
 pta.model_assessment

 	module

 	
 pta.pmo

 	module

 	
 pta.sampling

 	module

 	
 pta.sampling.commons

 	module

 	
 pta.sampling.convergence_manager

 	module

 	
 pta.sampling.primitives

 	module

 	
 pta.sampling.tfs

 	module

 	
 pta.sampling.uniform

 	module

 	
 pta.thermodynamic_space

 	module

 	
 pta.utils

 	module

Q

 	
 	Q (in module pta.commons)

 	
 	QuantitativeAssessment (class in pta.model_assessment)

R

 	
 	reaction_ids (pta.flux_space.FluxSpace property)

 	(pta.sampling.primitives.FluxSpaceSamplingModel property)

 	(pta.thermodynamic_space.ThermodynamicSpace property)

 	
 	reactions_df (pta.model_assessment.QuantitativeAssessment property)

 	rebuild_for_directions() (pta.pmo.PmoProblem method)

 	reversible_rxn_ids (pta.sampling.tfs.TFSModel property)

 	run() (pta.sampling.convergence_manager.ConvergenceManager method)

S

 	
 	S (pta.flux_space.FluxSpace property)

 	S_constraints (pta.thermodynamic_space.ThermodynamicSpace property)

 	sample_drg() (in module pta.sampling.tfs)

 	sample_drg0_from_drg() (in module pta.sampling.tfs)

 	sample_flux_space_uniform() (in module pta.sampling.uniform)

 	sample_fluxes_from_drg() (in module pta.sampling.tfs)

 	sample_from_chains() (in module pta.sampling.commons)

 	sample_log_conc_from_drg() (in module pta.sampling.tfs)

 	SamplerInterface (class in pta.sampling.commons)

 	samples (pta.sampling.commons.SamplingResult property)

 	SamplingException

 	SamplingResult (class in pta.sampling.commons)

 	save() (pta.concentrations_prior.ConcentrationsPrior method)

 	sigmas (pta.thermodynamic_space.ThermodynamicSpaceBasis property)

 	
 	sign_constraints (pta.pmo.PmoProblem property)

 	simulate() (pta.sampling.commons.SamplerInterface method)

 	(pta.sampling.tfs.TFSModel method)

 	(pta.sampling.uniform.UniformSamplingModel method)

 	solve() (pta.pmo.PmoProblem method)

 	solver (pta.pmo.PmoProblem property)

 	solver_options (pta.pmo.PmoProblem property)

 	split_chains() (in module pta.sampling.commons)

 	split_R() (in module pta.sampling.commons)

 	steady_state_constraint (pta.pmo.PmoProblem property)

 	StructuralAssessment (class in pta.model_assessment)

 	subspace() (pta.thermodynamic_space.ThermodynamicSpace method)

 	summary() (pta.model_assessment.QuantitativeAssessment method)

 	(pta.model_assessment.StructuralAssessment method)

T

 	
 	T (pta.pmo.PmoProblem property)

 	(pta.sampling.tfs.TFSModel property)

 	tfs_default_feasibility_cache_size (in module pta.constants)

 	tfs_default_min_rel_region_length (in module pta.constants)

 	tfs_steps_multiplier (in module pta.constants)

 	TFSModel (class in pta.sampling.tfs)

 	ThermodynamicSpace (class in pta.thermodynamic_space)

 	ThermodynamicSpaceBasis (class in pta.thermodynamic_space)

 	theta_s (pta.model_assessment.QuantitativeAssessment property)

 	theta_z (pta.model_assessment.QuantitativeAssessment property)

 	tighten_model_bounds() (in module pta.utils)

 	to_drg() (pta.sampling.tfs.TFSModel method)

 	(pta.thermodynamic_space.ThermodynamicSpaceBasis method)

 	
 	to_drg0() (pta.thermodynamic_space.ThermodynamicSpaceBasis method)

 	to_drg0_transform (pta.thermodynamic_space.ThermodynamicSpaceBasis property)

 	to_drg_transform (pta.thermodynamic_space.ThermodynamicSpaceBasis property)

 	to_fluxes() (pta.sampling.primitives.FluxSpaceSamplingModel method)

 	to_fluxes_transform (pta.flux_space.FluxSpaceBasis property)

 	(pta.sampling.primitives.FluxSpaceSamplingModel property)

 	to_log_conc() (pta.thermodynamic_space.ThermodynamicSpaceBasis method)

 	to_log_conc_transform (pta.thermodynamic_space.ThermodynamicSpaceBasis property)

 	to_observables_transform (pta.thermodynamic_space.ThermodynamicSpaceBasis property)

 	to_reactions_ids() (in module pta.utils)

 	to_reactions_idxs() (in module pta.utils)

U

 	
 	ub (pta.flux_space.FluxSpace property)

 	UniformSamplingModel (class in pta.sampling.uniform)

 	
 	update_identifiers() (pta.concentrations_prior.ConcentrationsPrior method)

 	us_steps_multiplier (in module pta.constants)

V

 	
 	v (pta.pmo.PmoProblem proper