
PTA

Mattia Gollub

Aug 23, 2023

CONTENTS

1 Probabilistic Thermodynamic Analysis 3
1.1 Probabilistic Metabolic Optimization (PMO) . 3
1.2 Thermodynamic and Flux Sampling (TFS) . 3

2 References 45

Python Module Index 47

Index 49

i

ii

PTA

This is the documentation for the PTA python package. PTA is available on git and via pip. See getting started for the
installation instructions and a simple example.

CONTENTS 1

https://gitlab.com/csb.ethz/pta/
https://pypi.org/project/pta/

PTA

2 CONTENTS

CHAPTER

ONE

PROBABILISTIC THERMODYNAMIC ANALYSIS

Probabilistic Thermodynamic Analysis (PTA)1 is a framework for the exploration of the thermodynamic properties of
a metabolic network. In PTA, we consider the steady-state thermodynamic space of a network, that is, the space of
standard reaction energies and metabolite concentrations that are compatible with steady state flux constraints. The
uncertainty of the variables in the thermodynamic space is modeled with a probability distribution, allowing analysis
with optimization and sampling approaches.

1.1 Probabilistic Metabolic Optimization (PMO)

PMO aims at finding the most probable values of reaction energies and metabolite concentrations that are compat-
ible with the steady state constrain. This method is particularly useful to indentify features of the network that are
thermodynamically unrealistic. For example, PMO can identify substrate channeling, incorrect cofactors or inaccurate
directionalities.

1.2 Thermodynamic and Flux Sampling (TFS)

TFS allows to jointly sample the thermodynamic and flux spaces of a network. The method provides estimates of
metabolite concentrations, reactions directions, and flux distributions.

1.2.1 Getting started

Requirements

In order to install PTA you need:

• Windows, Linux or OSX operating system.

• Python 3.8 or newer.

• One of the QP + MILP solvers supported by CVXPY. For models where all reaction directions are fixed, a QP
solver is sufficient.

• Optional (only for running the samplers):

– A compiler supporting C++ 17.
1 Mattia G Gollub, Hans-Michael Kaltenbach, and Jörg Stelling. Probabilistic thermodynamic analysis of metabolic networks. Bioinformatics,

37(18):2938–2945, 2021.

3

https://www.cvxpy.org/tutorial/advanced/index.html#choosing-a-solver

PTA

– The Gurobi solver (free for academia). Make sure you install the python bindings. On OSX systems
you may need to manually set the environment variable GUROBI_HOME to /Library/gurobi<version>/
<platform>, since the Gurobi installer does not do it automatically.

Installation

Once your system satisfies all the requirements, you can install PTA through the Python Package Index:

pip install pta

Installing PTA without samplers

You can install PTA without compiling the samplers by defining the PTA_NO_SAMPLERS environment variable:

PTA_NO_SAMPLERS=1 pip install pta # Linux, OSX
set "PTA_NO_SAMPLERS=1" && pip install pta # Windows

Installing PTA this way does not require Gurobi and the C++ compiler, but the functionalities will be limited to running
PMO and model assessment methods. The sampler will not work.

Simple example

This example shows a basic workflow with PTA. First it loads a model and creates its thermodynamic space, then it
runs PMO and TFS on it.

1 import enkie
2 import pta
3

4 # Load a SBML model and set bounds on known rates (e.g. growth).
5 model = pta.load_example_model("e_coli_core")
6 model.reactions.BIOMASS_Ecoli_core_w_GAM.lower_bound = 0.5
7

8 # Preprocess the model to make sure it is thermodynamically consistent.
9 pta.prepare_for_pta(model)

10

11 # Construct the thermodynamic space of the model.
12 thermodynamic_space = pta.ThermodynamicSpace.from_cobrapy_model(
13 model,
14 metabolites_namespace="bigg.metabolite",
15 parameters=enkie.CompartmentParameters.load("e_coli")
16)
17

18 # Run PMO on the model (by default it maximizes the probability of concentrations
19 # and reaction energies).
20 problem = pta.PmoProblem(model, thermodynamic_space)
21 problem.solve()
22

23 # Analyze the predicted concentrations and reaction energies, revealing potential
24 # knowledge gaps and inaccuracies in the model.
25 pta.QuantitativeAssessment(problem).summary()
26

(continues on next page)

4 Chapter 1. Probabilistic Thermodynamic Analysis

https://support.gurobi.com/hc/en-us/articles/360044290292-How-do-I-install-Gurobi-for-Python-

PTA

(continued from previous page)

27 # Sample the thermodynamic space of the network.
28 tfs_model = pta.TFSModel(model, thermodynamic_space, solver="GUROBI")
29 sampling_result = pta.sample_drg(tfs_model)
30 # sampling_result now contains samples of reaction energies as well as the
31 # probability of each orthant.

Expanding the example

The next pages of this documentation provide more details about each step and how to customize it for your work. You
can also look at additional examples.

• You can gain more control over the preprocessing step.

• The thermodynamic space should be constructed using parameters (pH, ionic strength, . . .) and metabolite
concentrations representative of the system you are modeling.

• You can use different objectives for PMO and access the predicted values directly.

• You can use the information provided by QuantitativeAssessment to curate your model.

• TFS can be used to characterize the feasible thermodynamic and flux spaces of the network.

1.2.2 Model preprocessing

A model must be thermodynamically sound in order to be used in PTA, which is usually not the case for published
genome-scale models. We provide a simple method that automatically preprocesses a model for use in PTA.

1 pta.prepare_for_pta(model)

The modifications performed by this method include relaxing flux bounds, removing blocked reactions and removing
“dead-end” futile cycles, thus they do not add further constraints to the capabilities of the model.

However, in some cases it may be relevant to obtain a complete report of the issues present in the model or to resolve
these issues manually. The following sections explain how to do that. Only either prepare_for_pta() or the steps
below are required.

Blocked reactions

In PTA all reactions have a well-defined direction, meaning that all reaction must have non-zero flux. This requires
that all blocked reactions are removed from the model in advance. You can easily do this using COBRApy’s functions:

1 import cobra
2 from cobra.flux_analysis.variability import find_blocked_reactions
3

4 model.remove_reactions(
5 find_blocked_reactions(model),
6 remove_orphans=True
7)

1.2. Thermodynamic and Flux Sampling (TFS) 5

https://gitlab.com/csb.ethz/pta/-/tree/main/examples

PTA

Forced internal cycles

Many models contain thermodynamically unfeasible internal cycles that must be active in any non-zero solution. This
is usually a consequence of incorrect irreversibilities and “dead-end” cycles. For example:

• The SUCDi and FRD7 reactions in the e_coli_core model both have the same stoichiometry and are irreversible,
but in opposing directions.

SUCDi: succ_c + q8_c -> q8h2_c + fum_c
FRD7: q8h2_c + fum_c -> succ_c + q8_c

This would imply that both directions are thermodynamically favorable, which is not possible. The solution is
to make both reactions reversible and let flux and thermodynamic constraints determine their direction.

• The FOMETRi and THFAT in the iML1515 model suffer of the same problem:

THFAT: h2o_c + methf_c -> 5fthf_c + h_c
FOMETRi: 5fthf_c + h_c -> h2o_c + methf_c

However, this is a “dead-end” cycle, since only 5fthf_c does not participate to any other reaction. In this case,
even making the two reactions reversible would not help, because any non-zero flux solution at steady state
requires the two reactions to have opposing directions. Since cycles like this would anyway have no effect on the
rest of the network we simply remove the reactions involved.

We emphasize that the presence of internal cycles in general is not a problem, and one of the strengths of PTA is
to obtain loopless, thermodynamically feasible solutions. This section deals with internal cycles that must always be
active and thus make the model unfeasible in principle.

Detecting inconsistencies

You can use the StructuralAssessment class to list all the problematic cycles in the model.

1 assessment = pta.StructuralAssessment(model, 'Biomass', 'ATPM')
2 assessment.summary()

> The following internal cycles are thermodynamically unfeasible, but must be active
in any non-zero flux solution, meaning that the model is thermodynamically
inconsistent.
...
0. THMDt2pp_copy1, THMDt2pp_copy2
1. ALAt2pp_copy1, ALAt2pp_copy2
2. CYTDt2pp_copy1, CYTDt2pp_copy2
3. ACCOAL, PPAKr, PTA2
4. ADNt2pp_copy1, ADNt2pp_copy2
5. FOMETRi, THFAT
...

Note that you need to specify the identifier of the biomass and ATP maintenance reactions.

6 Chapter 1. Probabilistic Thermodynamic Analysis

PTA

Resolving inconsistencies

You can then resolve the problems manually or attempt to solve them automatically (logging is only needed to print the
actions performed):

1 import logging
2 logging.basicConfig()
3 logging.getLogger().setLevel(logging.INFO)
4

5 assessment.autoresolve(model)

Removing bounds for all reactions in the cycle: THMDt2pp_copy1, THMDt2pp_copy2.
Removing bounds for all reactions in the cycle: ALAt2pp_copy1, ALAt2pp_copy2.
Removing bounds for all reactions in the cycle: CYTDt2pp_copy1, CYTDt2pp_copy2.
Removing bounds for all reactions in the cycle: ACCOAL, PPAKr, PTA2.
Removing bounds for all reactions in the cycle: ADNt2pp_copy1, ADNt2pp_copy2.
Removing all reactions of the dead-end cycle: FOMETRi, THFAT.
...

If you identified inconsistencies in a condition-specific model, you can apply autoresolve() on the base model in
order to have the curation available for any condition-specific model generated from it.

Computing tighter bounds

To make the model simpler for later steps (PMO and TFS) it is good practice to restrict the bounds of each reaction to
the bounds computed with Flux Variability Analysis.

1 pta.utils.tighten_model_bounds(model)

In order to not overconstrain the model and to avoid introducing small coefficients that would be challenging for PMO,
this function may add small numerical margins. In any case, the resulting bounds are guaranteed to be equal or tighter
than the original ones.

1.2.3 The thermodynamic space

The quick way

The thermodynamic space of a network models metabolite and free energies for a selected set of reactions. In absence
of additional information, a thermodynamic space can be constructed from a COBRApy model:

1 thermodynamic_space = pta.ThermodynamicSpace.from_cobrapy_model(model)

This is a wrapper around the constructor of the :class:.:ThermodynamicSpace class, which can be used when interfacing
with other modeling frameworks.

1.2. Thermodynamic and Flux Sampling (TFS) 7

PTA

Advanced initialization

When additional information is available, one can provide a series of additional optional parameters. The parameters
are explained in the following sections.

1 thermodynamic_space = pta.ThermodynamicSpace.from_cobrapy_model(
2 model,
3 metabolites_namespace,
4 constrained_rxns,
5 estimator,
6 parameters,
7 concentrations
8)

Metabolites namespace

PTA needs to know how to find standardized metabolite identifiers. PTA reads identifiers from the annotations in the
SBML, but you need to specify which annotations you want to use. For example, for models downloaded from the
BiGG database, it is common to choose the "bigg.metabolite" namespace. By default, the first annotation for each
metabolite is used, but it is always recommended to specify a namespace manually to avoid inconsistencies.

Constrained reactions

The constrained_rxns parameter specifies which reactions in the network should be modeled in the thermodynamic
space. Thermodynamic constraints should be applied only to balanced reaction, as pseudo-reactions are not thermody-
namically realistic. Thus, by default, boundary reactions and biomass are excluded. Reactions can be specified as lists
of indices, lists of identifiers or lists of reactions. As a starting point, we recommend building the list of constrained
reactions using:

1 pta.utils.get_candidate_thermodynamic_constraints(
2 model,
3 metabolites_namespace
4)

Estimator

An object used for estimating standard reaction energies. At the moment PTA only uses eQuilibrator
(EquilibratorGibbsEstimator), but you are free to implement an interface for alternative estimation tools.

Compartment parameters

An object specifying the parameters (pH, pMg, ionic strength, electrostatic potential) of each compartment. Temper-
ature must be constant for the entire system. You can either fill this object yourself or load one of the default ones
(currently e_coli and human):

1 import enkie
2

3 parameters = enkie.CompartmentParameters.load('e_coli')

8 Chapter 1. Probabilistic Thermodynamic Analysis

PTA

Concentrations prior

ConcentrationsPrior objects specify measured or assumed distributions for the concentration of each metabolite.
Since measurements are usually not available for all metabolites, PTA will use the following information, in order of
preference, to determine the distribution of metabolite M in compartment C:

1. The distribution of the concentration of M itself.

2. A default distribution for any metabolite in C.

3. A default distribution for any metabolite.

You can load priors from files or create your own. PTA includes priors for the extracellular concentrations in M9
(M9_aerobic, M9_anaerobic) and for the intracellular concentrations with different carbon sources (ecoli_M9_<s>,
where <s> can be ac, fru, gal, glc, glcn, glyc, pyr, succ) based on1. Different can also be combined. In case of
conflict, the added prior overwrites distributions of the original prior.

1 # Load the prior for metabolite concentrations in M9 media.
2 concentrations = pta.ConcentrationsPrior.load('M9_aerobic')
3

4 # Add the prior for intracellular concentrations when growing on succinate.
5 concentrations.add(pta.ConcentrationsPrior.load('ecoli_M9_succ'))
6

7 # Manually add a distribution. Note that we must use log-normal distributions.
8 import numpy as np
9 concentrations.metabolite_distributions[('bigg.metabolite:g3p', 'c')] = \

10 pta.LogNormalDistribution(log_mean=np.log(1e-4), log_std=0.2)
11

12 # Updating identifiers after a modification is recommended to make sure that we can
13 properly recognize identifiers from different namespaces.
14 concentrations.update_identifiers()
15

16 # Save your newly created prior for later use.
17 concentrations.save('my_prior.csv')

Thermodynamic space basis

Because of correlation existing within and between metabolite concentrations, standard reaction energies and reaction
energies, the dimensionality of the thermodynamic space is usually lower than the number of variables. One can easily
obtain a full-dimensional representation that can be used for PMO and TFS:

1 basis = pta.ThermodynamicSpaceBasis(thermodynamic_space)

This class contains a mapping between a full dimensional basis and the variables of the thermodynamic space. Variables
of the basis are referred to as m in2.

1 Luca Gerosa, Bart RB Haverkorn van Rijsewijk, Dimitris Christodoulou, Karl Kochanowski, Thomas SB Schmidt, Elad Noor, and Uwe Sauer.
Pseudo-transition analysis identifies the key regulators of dynamic metabolic adaptations from steady-state data. Cell systems, 1(4):270–282, 2015.

2 Mattia G Gollub, Hans-Michael Kaltenbach, and Jörg Stelling. Probabilistic thermodynamic analysis of metabolic networks. Bioinformatics,
37(18):2938–2945, 2021.

1.2. Thermodynamic and Flux Sampling (TFS) 9

PTA

References

1.2.4 Optimizing thermodynamics

Probabilistic Metabolic Optimization (PMO) allows to run optimization problems using both flux and thermodynamic
constraints. This is done using the PmoProblem class.

1 # Create a PMO problem.
2 problem = pta.PmoProblem(model, thermodynamic_space)
3

4 # Solve the PMO problem. The object now contains the solution.
5 status = problem.solve()

Internally, optimization problems are constructed using CVXPY as interface for different solvers. The CVXPY opti-
mization variables are problem.m (the basis of the thermodynamic space), problem.d (the direction of the reactions
constrained by thermodynamics) and problem.vs (the scaled fluxes). For convenience, we provide properties to access
predicted values of the biologically relevant variables v (fluxes), log_c (log-concentrations), drg (reaction energies),
drg0 (standard reaction energies).

Setting the objective

By default, PMO maximizes the probability of the variables in the thermodynamic space. It is possible to set custom
objective (e.g. on fluxes or concentrations) by passing a function creating the objective to the constructor.

1 import cvxpy as cp
2 objective = lambda p: cp.Minimize(p.vs[26])
3 problem = pta.PmoProblem(model, thermodynamic_space, objective=objective)

Numerics

PMO uses the Big-M formulation to encode the directionality constraints in a MILP problem. While this is an efficient
representation, it is also known to have numerical limitations. In particular, PMO may fail or give inaccurate solutions
if fluxes and reaction energies span more than nine orders of magnitude.

For this reason, we internally transform the problem to use scaled fluxes and a full-dimensional basis for the thermody-
namic space. While we can automatically compute optimal values for the Big-M coefficients of fluxes, PMO guidance
for the reaction energies. In practice, we assume that all reaction energies have magnitude between 0.1 and 1000 kJ/mol,
which we believe is biologically reasonable. It is possible to change these values in the constructor of PmoProblem in
case larger or smaller reaction energies are expected. However, this should be done with care, keeping in mind that it
may lead to numerical issues.

Currently we optimized numerics-related solver parameters for Gurobi only. If you use other solvers, you may need to
use the solver_options argument to set stricter feasibility tolerances for your solver.

10 Chapter 1. Probabilistic Thermodynamic Analysis

https://www.cvxpy.org/

PTA

1.2.5 Model assessment

Thermodynamics-based model assessment consists in finding parts of the network where the model structure and the
measured or assumed metabolite concentrations are not compatible, suggesting model inaccuracies or novel mecha-
nisms. Such cases can have different explanations:

• COBRA models have been constructed with Flux Balance Analysis (FBA) as the main application and frequently
contain thermodynamic inaccuracies. Some reactions may be annotated as irreversible in the model, while they
are not in practice.

• The direct interpretation of COBRA models is that individual reactions are independent events, i.e. (1) substrates
diffuse to the enzyme, (2) substrates are converted to products (3) products equilibrate with the compartment.
However the actual mechanism could be different. For example, substrate channeling could occur. In that case,
an intermediate is passed directly from one enzyme to the other, without equilibrating with the metabolite pool in
the compartment. While this mechanism is irrelevant for FBA, it has significant influence on thermodynamics.

• Despite continuous improvements, we still don’t know the exact stoichiometry of metabolic networks, even for
well-studies organisms. Reactions may be missing or have incorrect cofactors (with different thermodynamic
properties).

Additionally, model assessment can tell us which reactions impose the strongest constraints on the thermodynamics of
the network.

See1 for additional information.

Thermodynamic anomalies

We can use PMO to detect anomalies in the network, i.e. variables whose predicted value is significantly different from
its prior. A predicted value is flagged as anomaly if its z-score is larger than a certain threshold. A threshold of one
means that a variable is flagged only if its predicted value is at least one standard deviation away from the its initial
estimate.

Identifying anomalies

The QuantitativeAssessment class can be used to detect anomalies in a PMO solution. While you can set arbi-
trary objective in PMO, we recommend to use the default objective (maximize the probability of the thermodynamic
variables).

1 # Construct and solve the PMO problem.
2 problem = pta.PmoProblem(model, thermodynamic_space)
3 problem.solve()
4

5 # Analyze the result to find anomalies in the predicted values.
6 assessment = pta.QuantitativeAssessment(problem)
7 assessment.summary()

Quantitative thermodynamic assessment summary:
--
conentrations: mM, free energies: kJ/mol

> The following metabolites have been flagged as anomalies because their predicted
concentration has an absolute z-score greater than 1.0:

(continues on next page)

1 Mattia G Gollub, Hans-Michael Kaltenbach, and Jörg Stelling. Probabilistic thermodynamic analysis of metabolic networks. Bioinformatics,
37(18):2938–2945, 2021.

1.2. Thermodynamic and Flux Sampling (TFS) 11

https://en.wikipedia.org/wiki/Standard_score

PTA

(continued from previous page)

id conc z_log_c
524 mqn8_c 3.831e+03 4.843
520 mql8_c 1.434e-05 -4.843
234 fadh2_c 2.214e-05 -4.627
544 iasp_c 7.845e-05 -3.995
...

> No anomaly found in non-intracellular concentrations.

> The following reactions have been flagged as anomalies because their predicted
free energy or standard free energy has an absolute z-score greater than 1.0:

id v drg0 drg z_drg z_drg0 sp_drg
178 ASPO4 2.020e-08 84.123 -1.000e-03 -9.908 -5.824e+00 1.547e+00
479 GLYCTO3 1.373e-07 59.109 -1.000e-03 -7.215 -4.758e+00 2.611e-01
378 FRD2 7.783e-07 -75.359 -2.391e+01 6.513 4.571e+00 4.807e-12
...

> The following reactions are predicted to impose strong thermodynamic constraints
on the network because their shadow price is greater than 0.1:

id v drg0 drg z_drg z_drg0 sp_drg
178 ASPO4 2.020e-08 84.123 -1.000e-03 -9.908 -5.824e+00 1.547
127 AIRC3 -2.692e-01 -30.990 1.000e-03 5.580 3.627e+00 1.161
588 IMPD 1.462e-01 48.407 -1.000e-03 -5.900 -4.249e+00 0.991
...

Note that you can adjust the threshold for anomalies in the constructor of the QuantitativeAssessment class.

Interpreting and curating anomalies

Once you obtain the predicted anomalies you should investigate what is the reason. Here is a checklist of the most
common reasons for anomalies:

1. Is the anomaly expected? E.g. oxygen concentration is often flagged as anomaly, but it is normal to expect low
concentrations.

2. If the reaction is irreversible, is this annotation correct? Sometimes COBRA models are too restrictive in that
sense.

3. Is the metabolite channeled between two reactions? Or is there at least some hint for that in the literature or in
databases such as STRING?

4. Is the stoichiometry of the reaction correct? Maybe a reaction can use different cofactors. Moreover, some core
models may use a single electron acceptor for all reactions, even if different ones are used in practice.

5. How reliable is the standard reaction energy for the reaction? Free energies for exotic or large compounds are
determined with group contribution, which may underestimate the uncertainty.

6. Is the structure of the metabolite defined? Complex sugars such as glycogen can have different structures in
different databases.

Points 3 and 4 are particularly interesting, as they can reveal new biological mechanisms. SeePage 11, 1 for additional
information.

The snippet above shows part of the output obtained running the assessment on the iJO1366 model. It shows anomalies
in the concentrations of mqn8, mql8 and iasp as well as in the standard free energy of of the reaction they participate

12 Chapter 1. Probabilistic Thermodynamic Analysis

https://string-db.org/

PTA

to (aspartate oxidase, ASPO4). In this case the most probable explanation is that iminoaspartate (iasp) is channeled
between aspartate oxidase and quinolinate synthase (2).

We can now curate the model by replacing the two reactions with a lumped reaction representing the channel. Since
aspartate oxidase can use different electron acceptors, we should do the same with all variants of the reaction.

We recommend investigating and resolving anomalies iteratively: start from the highest anomaly and either resolve it
or accept it. If you modified the model, run the assessment again and continue with the next highest anomaly.

Performance considerations

Running PMO can take a considerable amount of time on medium-large models. The runtime is even higher when the
model contains several anomalies because the solution is pushed towards regions of low probability (further away from
the objective). In these cases we recommend to separate the process in two steps:

1. Run the assessment and curate the model for each compartment independently. For example you can construct a
thermodynamic space that only covers intracellular reactions as follows:

1 # Get candidate thermodynamic constraints for the model, excluding
2 # extrcellular and periplasmic reactions.
3 constrained_rxn_ids = pta.get_candidate_thermodynamic_constraints(
4 model,
5 metabolites_namespace="bigg.metabolite",
6 exclude_compartments=['p', 'e']
7)
8

9 # Construct a thermodynamic space covering only the selected reactions.
10 thermodynamic_space = pta.ThermodynamicSpace.from_cobrapy_model(
11 model,
12 metabolites_namespace="bigg.metabolite",
13 constrained_rxns=constrained_rxn_ids
14)

2. After curating each compartment, you can apply PMO and model assessment on the entire network. This should
now be much faster.

References

1.2.6 Sampling thermodynamics and fluxes

Thermodynamics and Flux Sampling (TFS) allows to sample steady state reaction energies, standard reaction energies,
metabolite concentrations and fluxes in a metabolic network.

TFS consists in two main steps:

1. Sample reaction energies and orthants (sets of reaction directions in the model).

2. Sample standard reaction energies, metabolite concentrations and reaction fluxes conditioned on the sampled
reaction energies and orthants.

2 Ilaria Marinoni, Simona Nonnis, Carmine Monteferrante, Peter Heathcote, Elisabeth Härtig, Lars H Böttger, Alfred X Trautwein, Armando
Negri, Alessandra M Albertini, and Gabriella Tedeschi. Characterization of l-aspartate oxidase and quinolinate synthase from bacillus subtilis. The
FEBS journal, 275(20):5090–5107, 2008.

1.2. Thermodynamic and Flux Sampling (TFS) 13

PTA

Sampling reaction energies

The first step is to sample reaction energies and estimate the probability of the orthants of the thermodynamic space:

1 # Wrap a cobrapy model and the corresponding thermodynamic space in a single object.
2 tfs_model = pta.TFSModel(model, thermodynamic_space)
3

4 # Sample the thermodynamic space.
5 result = pta.sample_drg(tfs_model)

The result object contains the following fields:

• samples: Pandas data frame containing the samples of reaction energies.

• orthants: Pandas data frame containing the signs (-1 / +1) of the sampled orthants. An additional column
weight stores the weight of each orthant.

• psrf Pandas series containing the Potential Scale Reduction Factor (PSRF) of each reaction energy. This is only
used to assess convergence of the sampling procedure.

Note that the space of steady state reaction energies is generally non-convex and disconnected, thus convergence can
take a high number of steps. While PTA tries to automatically choose a good number of steps, this may not be sufficient
for challenging models and you may get a warning that sampling did not converge. In this case you should manually
tell sample_drg() to use more steps using the num_steps option.

Sampling the conditionals

The remaining quantities can be sampled from the reaction energies:

1 # Sample the natural logarithm of the metabolite concentrations. This function draws
2 # one concentration sample for each reaction energy sample.
3 log_conc = sample_log_conc_from_drg(thermodynamic_space, result.samples)
4

5 # Sample the standard reaction energies. This function draws one standard reaction
6 # energy sample for each reaction energy sample.
7 drg0 = sample_drg0_from_drg(thermodynamic_space, result.samples)
8

9 # Sample reaction fluxes. For each unique orthant represented by the reaction energy
10 # samples this function draws a number of flux samples proportional to the weight of
11 # the orthant.
12 fluxes = sample_fluxes_from_drg(model, result.samples, result.orthants)

Each function returns a Pandas data frame containing the samples. For concentrations and standard reaction energies,
PTA can use an analytical expression of the conditional probability, which makes sampling very fast. However, for
fluxes we need to run uniform sampling on each orthant separately, which can take a long time for medium-large models.
If sampling fluxes takes too long, pass fewer reaction energy samples to reduce the number of orthants sampled.

14 Chapter 1. Probabilistic Thermodynamic Analysis

PTA

1.2.7 API Reference

This page contains auto-generated API reference documentation1.

pta

Probabilistic Thermodynamic Analysis of metabolic networks.

Subpackages

pta.data

Subpackages

pta.data.concentration_priors

pta.data.models

pta.sampling

Submodules

pta.sampling.commons

Common classes and methods for sampling algorithms.

Module Contents

exception pta.sampling.commons.SamplingException

Bases: Exception

Raised when an exception occurs during sampling.

class pta.sampling.commons.SamplingResult(samples: pandas.DataFrame, psrf: pandas.Series,
basis_samples: pandas.DataFrame = None, chains:
numpy.ndarray = None)

Encapsulates the result of a sampler.

Parameters

• samples (pd.DataFrame) – Data frame containing the samples as rows.

• psrf (pd.Series) – Series containing the PSRF of each variable.

• basis_samples (pd.DataFrame, optional) – The samples in the basis.

• chains (np.ndarray, optional) – The simulated chains.

property basis_samples: pandas.DataFrame

Gets a data frame containing the samples in the basis.

1 Created with sphinx-autoapi

1.2. Thermodynamic and Flux Sampling (TFS) 15

https://docs.python.org/3/library/exceptions.html#Exception
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://github.com/readthedocs/sphinx-autoapi

PTA

property samples: pandas.DataFrame

Gets a data frame containing the samples.

property chains: numpy.ndarray

Get the simulated chains.

property psrf: pandas.Series

Gets the Potential Scale Reduction Factor (PSRF) of each variable.

check_convergence(max_psrf: float = default_max_psrf)→ bool
Checks whether the chains converged according to the given criteria.

Parameters
max_psrf (float, optional) – Maximum PSRF value for convergence.

Returns
True if the test succeeded, false otherwise.

Return type
bool

class pta.sampling.commons.SamplerInterface

Interface for an MCMC sampler.

abstract property dimensionality: int

Get the dimensionality of the sampling space.

abstract simulate(settings: _pta_python_binaries.SamplerSettings, initial_points: numpy.ndarray,
directions_transform: numpy.ndarray)→ Any

Run the sampler with the given parameters.

Parameters

• settings (pb.SamplerSettings) – Sampling settings.

• initial_points (np.ndarray) – The initial points for the chains.

• directions_transform (np.ndarray) – The transform for the directions sampler.

abstract compute_psrf(result: Any)→ pandas.Series
Compute the potential scale reduction factors for the variables of interest on a given set of chains.

Parameters
result (Any) – The result of the sampling function.

Returns
The computed potential scale reduction factors.

Return type
pd.Series

abstract get_chains(result: Any)→ numpy.ndarray
Extract the simulated chains from a given result.

Parameters
result (Any) – The result of the native sampling function.

Returns
The simulated chains.

Return type
np.ndarray

16 Chapter 1. Probabilistic Thermodynamic Analysis

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PTA

pta.sampling.commons.sample_from_chains(chains: numpy.ndarray, num_samples: int)→ numpy.ndarray
Draws samples from a given set of chains.

Parameters

• chains (np.ndarray) – Numpy 3D array containing the chains.

• num_samples (int) – Number of samples to draw.

Returns
Array of samples.

Return type
np.ndarray

pta.sampling.commons.split_chains(chains: numpy.ndarray)→ numpy.ndarray
Split the chains in two, threating each half as a new chain. This is often used to detect systematic trends in a
random walk.

Parameters
chains (np.ndarray) – Numpy 3D array containing the input chains.

Returns
Numpy 3D array containing the resulting chains.

Return type
np.ndarray

pta.sampling.commons.apply_to_chains(chains: numpy.ndarray, f: Callable[[numpy.ndarray],
numpy.ndarray])→ numpy.ndarray

Apply a function to each sample of a group of chains.

Parameters

• chains (np.ndarray) – Numpy 3D array containing the input chains.

• f (Callable[[np.ndarray], np.ndarray]) – Function to apply to each sample.

Returns
Numpy 3D array containing the transformed samples.

Return type
np.ndarray

pta.sampling.commons.split_R(chains: numpy.ndarray)→ numpy.ndarray
Compute the split-R (or Potential Scale Reduction Factor) of each variable in the given chains.

Parameters
chains (np.ndarray) – Numpy 3D array containing the input chains.

Returns
Vector containing the split-R value for each variable.

Return type
np.ndarray

pta.sampling.commons.fill_common_sampling_settings(settings: _pta_python_binaries.SamplerSettings,
num_samples: int, num_steps: int, num_chains:
int = -1, num_warmup_steps: int = -1,
max_threads: int = default_max_threads)

Fills default values for common sampling settings.

Parameters

1.2. Thermodynamic and Flux Sampling (TFS) 17

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PTA

• settings (SamplerSettings) – The settings object to be filled.

• log_directory (str) – Directory in which the sampling logs should be stored.

• num_samples (int) – Number of samples to draw.

• num_steps (int) – Number of steps to take with each chain.

• num_chains (int, optional) – Number of chains to use. Will be set to the number of
CPUs by default.

• num_warmup_steps (int, optional) – Number of burn-in steps to discard. Will be set
to half the number of steps by default.

• log_interval (datetime.timedelta, optional) – Interval between each logging
event.

Raises
ValueError – If the inputs are inconsistent.

pta.sampling.convergence_manager

Management of MCMC simulation to achieve desired convergence criteria.

Module Contents

class pta.sampling.convergence_manager.ConvergenceManager(sampler:
pta.sampling.commons.SamplerInterface,
num_initial_steps: int = -1,
samples_based_rounding: bool = False)

Class managing MCMC simulations to achieve desired convergence criteria.

Parameters

• sampler (Sampler) – Object implementing a specific MCMC sampler.

• num_initial_steps (int, optional) – Initial number of steps for simulations, by de-
fault -1 (automatic).

• samples_based_rounding (bool, optional) – If true, the direction sampling distribu-
tion will be adjusted after each iteration based on the distribution of samples so far, by default
False

run(settings: _pta_python_binaries.SamplerSettings, update_settings_function:
Callable[[_pta_python_binaries.SamplerSettings, int], None], make_sampling_result_function:
Callable[[Any], pta.sampling.commons.SamplingResult], initial_points: numpy.ndarray, max_steps: int,
max_psrf: float)→ pta.sampling.commons.SamplingResult
Run the sampler using this manager until the given PSRF or maximum number of steps is reached.

Parameters

• settings (pb.SamplerSettings) – The initial settings for the sampler.

• update_settings_function (Callable[[pb.SamplerSettings, int], None]) –
Function for updating the settings with different numbers of steps.

• make_sampling_result_function (Callable[[Any], SamplingResult]) – Func-
tion for packing the result of the native sampler in a SamplingResult object.

• initial_points (np.ndarray) – The initial points for the simulation.

18 Chapter 1. Probabilistic Thermodynamic Analysis

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PTA

• max_steps (int) – Maximum number of steps to simulate.

• max_psrf (float) – Maximum PSRF to declare convergence.

Returns
The result of the sampler.

Return type
SamplingResult

Raises
SamplingException – If the native sampler fails.

pta.sampling.primitives

Abstract base class for sampling over the flux polytope.

Module Contents

class pta.sampling.primitives.FluxSpaceSamplingModel(polytope: PolyRound.api.Polytope,
reaction_ids: List[str])

Bases: pta.sampling.commons.SamplerInterface

Object holding the information necessary to sample a flux space.

Parameters

• polytope (Polytope) – Polytope object describing the flux space.

• reaction_ids (List[str]) – Identifiers of the reactions in the flux space.

property G: numpy.array

Gets the left-hand side of the constraints of the flux space.

property h: numpy.array

Gets the right-hand side of the constraints of the flux space.

property to_fluxes_transform: Tuple[numpy.array, numpy.array]

Gets the transform from a point in the model to a point in the flux space.

property reaction_ids

Gets the IDs of the reactions in the model.

property dimensionality: int

Gets the dimensionality of the flux space.

to_fluxes(value: numpy.array)→ numpy.array
Transform a point or matrix from the model to the flux space.

Parameters
value (np.array) – Input values.

Returns
The corresponding fluxes.

Return type
np.array

1.2. Thermodynamic and Flux Sampling (TFS) 19

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PTA

get_initial_points(num_points: int)→ numpy.array
Gets initial points for sampling fluxes.

Parameters

• model (UniformSamplingModel) – The model to sample.

• num_points (int) – Number of initial points to generate.

Returns
Array containing the initial points.

Return type
np.array

pta.sampling.tfs

Thermodynamics-based sampling of free energies, concentrations and fluxes.

Module Contents

class pta.sampling.tfs.TFSModel(network: Union[cobra.Model, pta.flux_space.FluxSpace],
thermodynamic_space: pta.thermodynamic_space.ThermodynamicSpace,
thermodynamic_space_basis:
pta.thermodynamic_space.ThermodynamicSpaceBasis = None,
confidence_level: float = 0.95, min_drg: float = 0.1, max_drg: float =
1000, solver: Optional[str] = None, solver_options: dict = None)

Bases: pta.sampling.commons.SamplerInterface

Object holding the information necessary to run TFS.

Parameters

• network (Union[cobra.Model, FluxSpace]) – Cobra model or FluxSpace object de-
scribing the flux space of the metabolic network.

• thermodynamic_space (ThermodynamicSpace) – Description of the thermodynamic
space of the metabolic network.

• thermodynamic_space_basis (ThermodynamicSpaceBasis, optional) – A basis for
the thermodynamic space. If specified, m will be defined in this basis.

• objective (Callable[[PmoProblem], cp.problems.objective.Objective],
optional) – A function used to set the optimization objective. By default the probability
of in thermodynamic space is maximized.

• confidence_level (float, optional) – Confidence level (in the range [0.0, 1.0[) on the
joint of the thermodynamic variables, by default 0.95.

• min_drg (float, optional) – Minimum magnitude for the reaction energy of each reac-
tion, by default 1e-1.

• max_drg (float, optional) – Maximum magnitude for the reaction energy of each reac-
tion, by default 1000.

• solver (Optional[str], optional) – Name of the solver to use, this can be any of the
solvers supported by CVXPY, by default None.

20 Chapter 1. Probabilistic Thermodynamic Analysis

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PTA

• solver_options (dict, optional) – Dictionary specifying additional options for the
solver.

property T: pta.thermodynamic_space.ThermodynamicSpace

Gets the thermodynamic space used for sampling.

property F: pta.flux_space.FluxSpace

Gets the flux space used for sampling.

property B: pta.thermodynamic_space.ThermodynamicSpaceBasis

Gets the basis of the thermodynamic space used for sampling.

property pmo_args

Gets the arguments used to construct PMO problems.

property dimensionality: int

Gets the dimensionality of the basis of the thermodynamic space.

property confidence_radius

Gets the radius of the selected confidence region.

property drg_epsilon

Gets the minimum magnitude of the reaction energy of irreversible reactions.

property reversible_rxn_ids

Gets the identifiers of the reversible reactions in the thermodynamic space.

get_reversible_reactions_ids_T()→ List
Get the ids of the reversible reactions in the thermodynamic space

Returns
The corresponding reactions ids

Return type
List

to_drg(value: numpy.ndarray)→ numpy.ndarray
Transform a point or matrix from the the basis to reaction energies.

Parameters
value (np.ndarray) – Input values in the basis.

Returns
The corresponding reaction energies.

Return type
np.ndarray

simulate(settings: _pta_python_binaries.SamplerSettings, initial_points: numpy.ndarray,
directions_transform: numpy.ndarray)→ _pta_python_binaries.TFSResult

Run the sampler with the given parameters.

Parameters

• settings (pb.SamplerSettings) – Sampling settings.

• initial_points (np.ndarray) – The initial points for the chains.

• directions_transform (np.ndarray) – The transform for the directions sampler.

1.2. Thermodynamic and Flux Sampling (TFS) 21

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PTA

compute_psrf(result: _pta_python_binaries.TFSResult)→ pandas.Series
Compute the potential scale reduction factors for the variables of interest on a given set of chains.

Parameters
result (pb.TFSResult) – The result of the sampling function.

Returns
The computed potential scale reduction factors.

Return type
pd.Series

get_chains(result: _pta_python_binaries.TFSResult)→ numpy.ndarray
Extract the simulated chains from a given result.

Parameters
result (pb.TFSResult) – The result of the native sampling function.

Returns
The simulated chains.

Return type
np.ndarray

get_initial_points(num_points: int)→ numpy.ndarray
Gets initial points for sampling reaction energies.

Parameters
num_points (int) – Number of initial points to generate.

Returns
Array containing the initial points.

Return type
np.ndarray

class pta.sampling.tfs.FreeEnergiesSamplingResult(samples: pandas.DataFrame, psrf: pandas.Series,
orthants: pandas.DataFrame, basis_samples:
pandas.DataFrame = None, chains:
numpy.ndarray = None)

Bases: pta.sampling.commons.SamplingResult

Encapsulates the result of sampling reaction energies.

Parameters

• samples (pd.DataFrame) – Data frame containing the free energy samples.

• psrf (pd.Series) – The Potential Scale Reduction Factors of each variable.

• orthants (pd.DataFrame) – Data frame containing the signs of the reversible reactions
for each orthants. Contains an additional column (“weight”) describing the weight of the
orthant.

• basis_samples (pd.DataFrame, optional) – The samples in the basis.

• chains (np.ndarray, optional) – The simulated chains.

property orthants: pandas.DataFrame

Gets a data frame containing the sampled orthants. Contains an additional column (“weight”) describing
the weight of the orthant.

22 Chapter 1. Probabilistic Thermodynamic Analysis

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PTA

pta.sampling.tfs.sample_drg(model: TFSModel, num_samples: int = default_num_samples,
num_direction_samples: int = default_num_samples, max_steps: int = -1,
max_psrf: float = default_max_psrf, num_chains: int = -1, initial_points:
numpy.ndarray = None, num_initial_steps: int = -1, feasibility_cache_size: int
= tfs_default_feasibility_cache_size, min_rel_region_length: float =
tfs_default_min_rel_region_length, max_threads: int = default_max_threads,
convergence_manager:
pta.sampling.convergence_manager.ConvergenceManager = None)→
FreeEnergiesSamplingResult

Sample reaction energies under steady state flux constraints in the given model.

Parameters

• model (TFSModel) – The model to sample.

• num_samples (int, optional) – Number of samples to draw.

• num_direction_samples (int, optional) – Number of orthant samples to collect.

• max_steps (int, optional) – The maximum number fo steps to simulate.

• max_psrf (float, optional) – Maximum value of the PSRFs for convergence.

• num_chains (int, optional) – The number of chains to simulate.

• initial_points (np.ndarray, optional) – The initial points for the chains.

• num_initial_steps (int, optional) – Initial chains length.

• feasibility_cache_size (int, optional) – Maximum size of the cache storing the
feasibility of the orthants encountered during the random walk.

• min_rel_region_length (float, optional) – Minimum length (relative to the length
of the entire ray) of a segment in order to consider it for sampling.

• max_threads (int, optional) – The maximum number of parallel threads to use.

• convergence_manager (ConvergenceManager, optional) – The object to use to mon-
itor and improve convergence.

Returns
The sampling result.

Return type
FreeEnergiesSamplingResult

Raises
SamplingException – If sampling fails.

pta.sampling.tfs.sample_log_conc_from_drg(thermodynamic_space:
pta.thermodynamic_space.ThermodynamicSpace,
drg_samples: pandas.DataFrame, min_eigenvalue: float =
default_min_eigenvalue_tds_basis)→ pandas.DataFrame

Sample the natural logarithm of the metabolite concentrations conditioned on samples of free energies. This
function draws one sample for each sample of reaction energies.

Parameters

• thermodynamic_space (ThermodynamicSpace) – The thermodynamic space of the net-
work.

• drg_samples (pd.DataFrame) – Data frame containing the samples of reaction energies.

1.2. Thermodynamic and Flux Sampling (TFS) 23

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PTA

• min_eigenvalue (float, optional) – Minimum eigenvalue to keep when performing
the truncated SVD of the covariance of the conditional probability.

Returns
Data frame containing the log-concentration samples.

Return type
pd.DataFrame

pta.sampling.tfs.sample_drg0_from_drg(thermodynamic_space:
pta.thermodynamic_space.ThermodynamicSpace, drg_samples:
pandas.DataFrame, min_eigenvalue: float =
default_min_eigenvalue_tds_basis)→ pandas.DataFrame

Sample standard reaction energies conditioned on samples of reaction energies. This function draws one sample
for each sample of reaction energies.

Parameters

• thermodynamic_space (ThermodynamicSpace) – The thermodynamic space of the net-
work.

• drg_samples (pd.DataFrame) – Data frame containing the samples of reaction energies.

• min_eigenvalue (float, optional) – Minimum eigenvalue to keep when performing
the truncated SVD of the covariance of the conditional probability.

Returns
Data frame containing the standard reaction energy samples.

Return type
pd.DataFrame

pta.sampling.tfs.sample_fluxes_from_drg(model: cobra.Model, drg_samples: pandas.DataFrame,
orthants: pandas.DataFrame, num_approx_samples: int =
default_num_samples)→ pandas.DataFrame

Sample the flux space using the samples of orthant of reaction energies and orthants as prior. For each unique or-
thant implied by the reaction energy samples, this function draws a number of uniform flux samples proportional
to the probability of the orthant in the thermodynamic space.

Parameters

• model (cobra.Model) – cobrapy model describing the flux space.

• drg_samples (pd.DataFrame) – The input reaction energy samples.

• orthants (pd.DataFrame) – Data frame containing the sampled orthants and their weights.

• num_approx_samples (int, optional) – Approximate number of samples to draw.

Returns
Data frame containing the flux samples.

Return type
pd.DataFrame

24 Chapter 1. Probabilistic Thermodynamic Analysis

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PTA

pta.sampling.uniform

Uniform sampling of the flux space of a metabolic network.

Module Contents

class pta.sampling.uniform.UniformSamplingModel(polytope: PolyRound.api.Polytope, reaction_ids:
List[str])

Bases: pta.sampling.primitives.FluxSpaceSamplingModel

Object holding the information necessary to run uniform sampling on a flux space.

Parameters

• polytope (Polytope) – Polytope object describing the flux space.

• reaction_ids (List[str]) – Identifiers of the reactions in the flux space.

classmethod from_cobrapy_model(model: cobra.Model, infinity_flux_bound: float =
default_flux_bound)→ UniformSamplingModel

Builds a uniform sampler model from a cobrapy model.

Parameters

• model (cobra.Model) – The input cobra model.

• infinity_flux_bound (float, optional) – Default bound to use for unbounded
fluxes.

Returns
The constructed model.

Return type
UniformSamplingModel

simulate(settings: _pta_python_binaries.SamplerSettings, initial_points: numpy.ndarray,
directions_transform: numpy.ndarray)→ numpy.ndarray

Run the sampler with the given parameters.

Parameters

• settings (pb.SamplerSettings) – Sampling settings.

• initial_points (np.ndarray) – The initial points for the chains.

• directions_transform (np.ndarray) – The transform for the directions sampler.

compute_psrf(result: numpy.ndarray)→ pandas.Series
Compute the potential scale reduction factors for the variables of interest on a given set of chains.

Parameters
result (np.ndarray) – The result of the sampling function.

Returns
The computed potential scale reduction factors.

Return type
pd.Series

1.2. Thermodynamic and Flux Sampling (TFS) 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PTA

get_chains(result: numpy.ndarray)→ numpy.ndarray
Extract the simulated chains from a given result.

Parameters
result (np.ndarray) – The result of the native sampling function.

Returns
The simulated chains.

Return type
np.ndarray

pta.sampling.uniform.sample_flux_space_uniform(model: Union[cobra.Model, UniformSamplingModel],
num_samples: int = default_num_samples, max_steps:
int = -1, max_psrf: float = default_max_psrf,
num_chains: int = -1, initial_points: numpy.array =
None, num_initial_steps: int = -1, max_threads: int =
default_max_threads, convergence_manager:
pta.sampling.convergence_manager.ConvergenceManager
= None)→ pta.sampling.commons.SamplingResult

Sample steady state fluxes in the given model. The sampler run until either max_steps or max_psrf is reached.

Parameters

• model (Union[cobra.Model, UniformSamplingModel]) – The model to sample.

• num_samples (int, optional) – Number of samples to draw.

• max_steps (int, optional) – The maximum number fo steps to simulate.

• max_psrf (float, optional) – Maximum value of the PSRFs for convergence.

• num_chains (int, optional) – The number of chains to simulate.

• initial_points (np.array, optional) – The initial points for the chains.

• num_initial_steps (int, optional) – Initial chains length.

• max_threads (int, optional) – The maximum number of parallel threads to use.

• convergence_manager (ConvergenceManager, optional) – The object to use to mon-
itor and improve convergence.

Returns
The sampling result.

Return type
SamplingResult

Raises
SamplingException – If sampling fails.

26 Chapter 1. Probabilistic Thermodynamic Analysis

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PTA

Submodules

pta.commons

Common definitions used in the PTA package.

Module Contents

pta.commons.Q

Type used for describing quantities.

pta.concentrations_prior

Definition of the prior distribution of metabolite concentrations.

Module Contents

class pta.concentrations_prior.ConcentrationsPrior(metabolite_distributions: Dict[Tuple[str, str],
Any] = None, compartment_distributions:
Dict[str, Any] = None, default_distribution: Any
= default_log_conc)

Manages prior distributions of concentrations for specific metabolites or compartments. This class provides a
distribution for the concentration of any metabolite using (depending on the availability) (1) the distribution for
the metabolite itself, (2) the default distribution of the compartment or (3) a default distribution.

Internally, metabolites are stored and accessed MetaNetX compound IDs or, when the compound is not recog-
nized, by metabolite name.

Parameters

• metabolite_distributions (Dict[Tuple[str, str], Any], optional) – Map-
ping from metabolites to their prior. Metabolites are specified as a tuple of metabolite ID
and compartment ID.

• compartment_distributions (Dict[str, Any], optional) – Mapping from com-
partment IDs to the prior of the concentration for the compartment. This prior is used for
compounds for which no explicit prior is given.

• default_distribution (Any, optional) – Prior distribution to use for metabolites and
compartments for which no prior is specified.

property metabolite_distributions: Dict[Tuple[Any, str], Any]

Gets the prior concentrations for specific metabolites. If the distributions are modified through this property,
update_identifiers() should be called to make sure that compounds are identified correctly across different
namespaces.

property compartment_distributions: Dict[str, Any]

Gets the prior concentrations for specific compartments.

property default_distribution

Gets the default prior for concentrations.

1.2. Thermodynamic and Flux Sampling (TFS) 27

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PTA

static load(prior_file: Union[pathlib.Path, str])→ ConcentrationsPrior
Loads the concentration priors from a .csv file.

Parameters
prior_file (Union[Path, str]) – Path to the file containing the parameter val-
ues or name of a builtin priors set (any file present in data/concentration_priors/, e.g.
‘ecoli_M9_ac’).

Returns
The loaded ConcentrationPrior object.

Return type
ConcentrationsPrior

save(prior_file: Union[pathlib.Path, str])
Saves the concentration priors to a .csv file.

Parameters
prior_file (Union[Path, str]) – Path to the destination file.

add(other: ConcentrationsPrior, overwrite_metabolite_priors: bool = True, overwrite_compartment_priors:
bool = True, overwrite_default_prior: bool = True)
Adds the distributions from another prior to this object.

Parameters

• other (ConcentrationsPrior) – The concentrations prior from which the distributions
have to be copied.

• overwrite_metabolite_priors (bool, optional) – Specifies whether, in case of du-
plicates, metabolite distributions in this object should be overwritten or not.

• overwrite_compartment_priors (bool, optional) – Specifies whether, in case of
duplicates, compartment distributions in this object should be overwritten or not.

• overwrite_default_prior (bool, optional) – Specifies whether the default distri-
bution in this object should be overwritten or not.

get(metabolite: str, compartment: str)→ Any
Gets the distribution for the concentration of a given compound. This uses (depending on the availability)
(1) the distribution for the compound itself, (2) the default distribution of the compartment or (3) a default
distribution.

Parameters

• metabolite (str) – Identifier (in any namespace supported by eQuilibrator) of the com-
pound.

• compartment (str) – Identifier of the compartment.

Returns
Distribution of the concentration of the specified compound.

Return type
Any

update_identifiers()

Updates the internal representation of the compound identifiers.

When possible, this class uses MetaNetX identifiers to represent compounds. This has the advantage that
priors can be created and accessed using different namespaces. This function should be called whenever
metabolite_distributions is modified.

28 Chapter 1. Probabilistic Thermodynamic Analysis

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PTA

pta.constants

Constants used in tha PTA package.

Module Contents

pta.constants.default_min_eigenvalue_tds_basis = 0.001

Default minimum eigenvalue for vector of the basis of the thermodynamic space.

pta.constants.default_log_conc

Default distribution of metabolite concentrations.

pta.constants.default_flux_bound = 1000

Default magnitude of lower/upper bounds of fluxes.

pta.constants.default_confidence_level = 0.95

Default confidence level for PMO problems and TFS

pta.constants.default_min_drg = 0.1

Default minimum DrG magnitude for PMO problems and TFS

pta.constants.default_max_drg = 1000

Default maximum DrG magnitude for PMO problems and TFS

pta.constants.non_intracellular_compartment_ids = ['e', 'p']

Identifiers of non-intracellular compartments.

pta.constants.default_theta_z = 1.0

Default threshold on the z-score to consider a predicted value an anomaly.

pta.constants.default_theta_s = 0.1

Default threshold on the shadow price to consider a reaction a strong thermodynamic constrain.

pta.constants.default_max_non_intracellular_conc_mM = 10

Default threshold on the concentration to consider a predicted concentration an anomaly.

pta.constants.default_min_chains = 4

Minimum number of chains to use by default.

pta.constants.default_num_samples = 1000

Default number of samples to store.

pta.constants.us_steps_multiplier = 64

Coefficient for the number of steps sampling a flux space.

pta.constants.tfs_steps_multiplier = 100

Coefficient for the number of steps sampling a thermodynamic space.

pta.constants.tfs_default_feasibility_cache_size = 10000

Size of the cache storing whether encountered orthants are feasible or not.

pta.constants.tfs_default_min_rel_region_length = 1e-06

Minimum relative size for an orthant to be considered during Hit-and-Run.

pta.constants.default_max_psrf = 1.1

Default treshold on the Potential Scale Reduction Factors (PSRFs).

1.2. Thermodynamic and Flux Sampling (TFS) 29

PTA

pta.constants.default_max_threads

pta.constants.min_samples_per_chain = 100

Minimum number of samples that must be drawn from each chain in order to obtain a meaningful PSRF score.

pta.flux_space

Description of the flux space of a metabolic network.

Module Contents

class pta.flux_space.FluxSpace(S: numpy.ndarray, lb: numpy.ndarray, ub: numpy.ndarray, reaction_ids:
List[str], metabolite_ids: List[str])

Description of the flux space of a metabolic network.

Parameters

• S (np.ndarray) – Stoichiometric matrix of the network.

• lb (np.ndarray) – Vector of lower bounds on the reaction fluxes.

• ub (np.ndarray) – Vector of upper bounds on the reaction fluxes.

• reaction_ids (List[str]) – Identifiers of the reactions in the network.

• metabolite_ids (List[str]) – Identifiers of the metabolites in the network.

property S: numpy.ndarray

Gets the stoichiometric matrix of the network.

property lb: numpy.ndarray

Gets the vector of lower bounds on the reaction fluxes.

property ub: numpy.ndarray

Gets the vector of upper bounds on the reaction fluxes.

property reaction_ids: List[str]

Gets the IDs of the reactions in the flux space.

property metabolite_ids: List[str]

Gets the IDs of the metabolites in the flux space.

property n_metabolites: int

Gets the number of metabolites in the network.

property n_reactions: int

Gets the number of reactions in the network.

property n_reversible_reactions: int

Gets the number of reversible reactions in the network.

copy()→ FluxSpace
Create a copy of this object.

Returns
A copy of this object.

30 Chapter 1. Probabilistic Thermodynamic Analysis

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PTA

Return type
FluxSpace

static from_cobrapy_model(model: cobra.Model)→ FluxSpace
Creates an instance of this class from a cobrapy model.

Parameters
model (cobra.Model) – The input model.

Returns
The constructed object.

Return type
FluxSpace

class pta.flux_space.FluxSpaceBasis(flux_space: FluxSpace)
Bases: object

Full-dimensional basis of the flux space. The parametrization is automatically rounded using PolyRound.

property G: numpy.ndarray

Gets the left-hand side of the constraints of the flux space.

property h: numpy.ndarray

Gets the right-hand side of the constraints of the flux space.

property to_fluxes_transform: Tuple[numpy.ndarray, numpy.ndarray]

Gets the transform from a point in the model to a point in the flux space.

property dimensionality: int

Gets the dimensionality of the flux space.

pta.model_assessment

Methods for the thermodynamic assessment of a metabolic network.

Module Contents

class pta.model_assessment.StructuralAssessment(model: cobra.Model, biomass_id: Optional[str] =
None, atpm_id: str = 'ATPM')

This class is used to find thermodynamic inconsistencies in the definition of the network that make the model
infeasible. Inconsistencies arise when flux constraints (steady state and irreversibilities) prevent any thermody-
namically feasible non-zero solution. These inconsistencies occur with any assignment of Gibbs free energies.

Parameters

• model (cobra.Model) – The target model.

• biomass_id (Optional[str], optional) – ID of the biomass reactions. If None, the
method will try to find it automatically.

• atpm_id (str, optional) – ID of the ATP maintenance reaction.

property forced_internal_cycles: List[List[str]]

Gets a list of all the forced internal cycles of the network, i.e. the internal cycles that must be active in any
non-zero flux solution and thus make the model thermodynamically inconsistent.

1.2. Thermodynamic and Flux Sampling (TFS) 31

https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PTA

summary()

Print a summary of the structural assessment.

autoresolve(model: cobra.Model, default_bound: float = default_flux_bound)
Attempt to automatically resolve thermodynamic inconsistencies. This method removes all reactions in-
volved in dead-end cycles (internal cycles that exchange flux with the rest of the network through a single
metabolite) and makes all the reactions in the remaining cycles reversible. While this method should al-
ways resolve all inconsistencies, it is still recommended to inspect the inconsistencies and the curated model
manually to verify that the model behave as expected. The output of the curation can be seen by enabling
logging level INFO.

Parameters

• model (cobra.Model) – The model in which the curation actions must be applied. This
can be the model on which the assessment was run or a similar model. This is useful for
cases where assessment is run on a condition specific model but actions should be applied
to a base model.

• default_bound (float, optional) – Default bound to use for unconstrained reactions.

class pta.model_assessment.QuantitativeAssessment(pmo_problem: pta.pmo.PmoProblem,
z_score_threshold: float = default_theta_z,
shadow_price_threshold: float = default_theta_s,
max_extracellular_conc: pta.commons.Q = None)

Quantitative thermodynamic assessment of a metabolic network. This process combines thermodynamic data
and flux constraints to identify parts of the network where the mechanism in the model is possibly incorrect.

Parameters

• pmo_problem (PmoProblem) – A solved PMO problem.

• z_score_threshold (float, optional) – Threshold on the z-score to consider a pre-
dicted value an anomaly.

• shadow_price_threshold (float, optional) – Threshold on the shadow price to con-
sider a reaction a strong thermodynamic constrain.

• max_extracellular_conc (Q, optional) – Threshold on the concentration to consider
a predicted concentration an anomaly.

property metabolites_df: pandas.DataFrame

Gets a data frame with the metabolite-related quantities.

property reactions_df: pandas.DataFrame

Gets a data frame with the reaction-related quantities.

property theta_z: float

Gets the mimimum absolute z-score used to classify a metabolite concentration as anomaly.

property theta_s: float

Gets the mimimum absolute shadow price to flag a constraint.

property max_ex_concentration: float

Gets the minimum concentration used to classify a non-intracellular metabolite concentration as anomaly.

summary()

Print a summary of the quantitative assessment.

32 Chapter 1. Probabilistic Thermodynamic Analysis

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PTA

pta.model_assessment.prepare_for_pta(model: cobra.Model, biomass_id: Optional[str] = None, atpm_id:
str = 'ATPM', default_bound: float = default_flux_bound,
autoresolve_inconsistencies: bool = True,
remove_blocked_reactions: bool = True, tighten_bounds: bool =
True, prevent_loops: bool = False)

Attempt to automatically prepare a model for use in PTA.

This method performs three actions:

• Runs structural assessment on the model and attempts to autoresolve possible inconsistencies.

• Removes all blocked reactions from the model.

• Runs FVA to tighten the flux bounds of each reaction.

Parameters

• model (cobra.Model) – The target model.

• biomass_id (Optional[str], optional) – ID of the biomass reactions. If None, the
method will try to find it automatically.

• atpm_id (str, optional) – ID of the ATP maintenance reaction.

• default_bound (float, optional) – Default bound to use for unconstrained reactions.

• autoresolve_inconsistencies (bool, optional) – True if the method should attempt
to automatically resolve inconsistencies, false otherwise. By default True.

• remove_blocked_reactions (bool, optional) – True if the method should remove
blocked reactions, false otherwise. By default True.

• tighten_bounds (bool, optional) – True if the method should restrict the flux bounds
with FVA, false otherwise. By default True.

pta.pmo

Construction and solution of Probabilistic Metabolic Optimization (PMO) problems.

Module Contents

class pta.pmo.PmoProblemPool(num_processes: Optional[int], *argv)
Creation of a process pool for solving multiple PMO problems on the same model.

map(fn: Callable[[PmoProblem, Any], Any], inputs: Iterable[Any])→ List[Any]
Execute a function on each input element.

This is the same as the regular map function, except that it executes in parallel on the available workers.

Parameters

• fn (Callable[[PmoProblem, Any], Any]) – Function to be applied to each element.

• inputs (Iterable[Any]) – An iterable containing the input elements.

Returns
A list containing the result of applying the function to each input element.

Return type
List[Any]

1.2. Thermodynamic and Flux Sampling (TFS) 33

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PTA

close()

Wait for all jobs to be done and closes the pool.

class pta.pmo.PmoProblem(network: Union[cobra.Model, pta.flux_space.FluxSpace], thermodynamic_space:
pta.thermodynamic_space.ThermodynamicSpace, thermodynamic_space_basis:
pta.thermodynamic_space.ThermodynamicSpaceBasis = None, objective:
Callable[[PmoProblem], cvxpy.problems.objective.Objective] = None,
confidence_level: float = default_confidence_level, min_drg: float =
default_min_drg, max_drg: float = default_max_drg, solver: Optional[str] = None,
solver_options: dict = None)

Construction and solution of a PMO problem.

Parameters

• network (Union[cobra.Model, FluxSpace]) – Cobra model or FluxSpace object de-
scribing the flux space of the metabolic network.

• thermodynamic_space (ThermodynamicSpace) – Description of the thermodynamic
space of the metabolic network.

• thermodynamic_space_basis (ThermodynamicSpaceBasis, optional) – A basis for
the thermodynamic space. If specified, m will be defined in this basis.

• objective (Callable[[PmoProblem], cp.problems.objective.Objective],
optional) – A function used to set the optimization objective. By default the probability
of in thermodynamic space is maximized.

• confidence_level (float, optional) – Confidence level (in the range [0.0, 1.0[) on the
joint of the thermodynamic variables, by default 0.95.

• min_drg (float, optional) – Minimum magnitude for the reaction energy of each reac-
tion, by default 1e-1.

• max_drg (float, optional) – Maximum magnitude for the reaction energy of each reac-
tion, by default 1000.

• solver (Optional[str], optional) – Name of the solver to use, this can be any of the
solvers supported by CVXPY, by default None.

• solver_options (dict, optional) – Dictionary specifying additional options for the
solver.

property confidence_level

Gets the confidence level on the thermodynamic space.

property min_drg: float

Gets the minimum absolute value of DrG allowed in the model.

property max_drg: float

Gets the maximum absolute value of DrG in the model.

property flux_scale: numpy.ndarray

Gets the vector of scaling factors for the scaled fluxes.

property objective: Optional[Callable[[PmoProblem],
cvxpy.problems.objective.Objective]]

Gets the function that constructs the PMO objective.

property vs: cvxpy.Variable

Gets the CVXPY variable representing scaled reaction fluxes.

34 Chapter 1. Probabilistic Thermodynamic Analysis

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PTA

property m: cvxpy.Variable

Gets the CVXPY variable representing the thermodynamic space in the minimal basis.

property d: cvxpy.Variable

Gets the CVXPY variable representing reaction directions.

property v: numpy.array

Gets the predicted reaction fluxes.

property log_c: numpy.ndarray

Gets the predicted log-concentrations. Can be none if concentrations are not represented explicitely.

property drg0: numpy.ndarray

Gets the predicted standard reaction energies. Can be none if standard reaction energies are not represented
explicitely.

property drg: numpy.ndarray

Gets the predicted reaction energies. Can be none if reaction energies are not represented explicitely.

property solver: Optional[str]

Gets the selected solver.

property solver_options: Dict[str, Any]

Gets the solver options.

property F: pta.flux_space.FluxSpace

Gets the flux space associated with the PMO problem.

property T: pta.thermodynamic_space.ThermodynamicSpace

Gets the thermodynamic space associated with the PMO problem.

property B: pta.thermodynamic_space.ThermodynamicSpaceBasis

Gets the thermodynamic space basis associated with the PMO problem.

property flux_lb_constraint: cvxpy.constraints.constraint.Constraint

Gets the lower bound constraint for fluxes.

property flux_ub_constraint: cvxpy.constraints.constraint.Constraint

Gets the upper bound constraint for fluxes.

property steady_state_constraint: cvxpy.constraints.constraint.Constraint

Gets the steady state constraint.

property confidence_constraint: cvxpy.constraints.constraint.Constraint

Gets the constraint for the selected confidence level.

property sign_constraints: cvxpy.constraints.constraint.Constraint

Gets the reaction direction constraints. The constraints at indices 0 and 1 are constraints on the reaction
energies, while 2 and 3 are constraints on the fluxes.

solve(verbose=False)→ str
Solves the PMO problem. The result of the optimization is stored inside the class.

Parameters
verbose (bool, optional) – True is the solver log should be printed to the console, false
otherwise. By default False.

Returns
The CVXPY result of the optimization.

1.2. Thermodynamic and Flux Sampling (TFS) 35

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PTA

Return type
str

rebuild_for_directions(directions: numpy.ndarray)→ PmoProblem
Construct a copy of this PMO problem constrained to the given reaction directions.

Parameters
directions (np.ndarray) – Vector containing the directions (0: backward, 1: forward) of
the reactions in T.

Returns
A copy of this problem, constrained to the given directions.

Return type
PmoProblem

pta.thermodynamic_space

Description of the space of thermodynamics-related quantities of a metabolic network.

Module Contents

class pta.thermodynamic_space.ThermodynamicSpace(S_constraints: numpy.ndarray, reaction_ids:
List[str], metabolites: List[enkie.Metabolite],
parameters: enkie.CompartmentParameters = None,
concentrations:
pta.concentrations_prior.ConcentrationsPrior =
None, estimator:
enkie.estimators.GibbsEstimatorInterface = None,
dfg0_estimate: Optional[Tuple[pta.commons.Q,
pta.commons.Q]] = None)

Construction, description and manipulation of the thermodynamic space of a metabolic network.

Parameters

• S_constraints (np.ndarray) – Stoichiometric matrix of the reactions covered by ther-
modynamic constraints.

• reaction_ids (List[str]) – Identifiers of the reactions covered by thermodynamic con-
straints.

• metabolites (List[Metabolite]) – List describing the metabolites in the network.

• parameters (CompartmentParameters, optional) – The physiological parameters
(pH, ionic strength, . . .) of each compartment.

• concentrations (ConcentrationsPrior, optional) – Prior distributions for the
metabolite concentrations.

• estimator (GibbsEstimatorInterface, optional) – Object used to estimate Gibbs
free energies.

• dfg0_estimate (Optional[Tuple[Q, Q]], optional) – Estimate of formation ener-
gies (mean and a square root of the covariance matrix) in case the user wants to specify them
manually. This is only used if estimator is None.

36 Chapter 1. Probabilistic Thermodynamic Analysis

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PTA

property dfg0_prime_mean: pta.commons.Q

Gets the mean of the corrected standard formation energies.

property dfg0_prime_cov: pta.commons.Q

Gets the covariance of the corrected standard formation energies.

property dfg0_prime_cov_sqrt: pta.commons.Q

Gets a square root of the covariance of the corrected standard formation energies.

property drg0_prime_mean: pta.commons.Q

Gets the mean of the corrected standard reaction energies.

property drg0_prime_cov: pta.commons.Q

Gets the covariance of the corrected standard reaction energies.

property drg0_prime_cov_sqrt: pta.commons.Q

Gets a square root of the covariance of the corrected standard reaction energies.

property log_conc_mean

Gets the mean of the log-concentrations.

property log_conc_cov

Gets the covariance of the log-concentrations.

property dfg_prime_mean

Gets the mean of the formation energies.

property dfg_prime_cov

Gets the covariance of the formation energies.

property drg_prime_mean

Gets the mean of the reaction energies.

property drg_prime_cov

Gets the covariance of the reaction energies.

property parameters: enkie.CompartmentParameters

Gets the compartment parameters of the system.

property metabolites: List[enkie.Metabolite]

Gets the list of metabolites in the thermodynamic space.

property S_constraints: numpy.ndarray

Gets stoichiometric matrix of the reactions with thermodynamic constraints.

property metabolite_ids: List[str]

Gets the IDs of the metabolites in the thermodynamic space.

property reaction_ids: List[str]

Gets the IDs of the reactions with thermodynamic constraints.

subspace(reaction_ids: Set[str], metabolite_ids: Set[str])→ ThermodynamicSpace

static from_cobrapy_model(model: cobra.Model, metabolites_namespace: str = None,
constrained_rxns: Union[List[int], List[str], cobra.DictList] = None,
estimator: enkie.estimators.GibbsEstimatorInterface = None, parameters:
enkie.CompartmentParameters = None, concentrations:
pta.concentrations_prior.ConcentrationsPrior = None, dfg0_estimate:
Optional[Tuple[pta.commons.Q, pta.commons.Q]] = None)→
ThermodynamicSpace

1.2. Thermodynamic and Flux Sampling (TFS) 37

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PTA

Constructs a thermodynamic space from a cobrapy model.

Parameters

• model (cobra.Model) – Cobra model describing the metabolic network.

• metabolites_namespace (str, optional) – Specifies the name to use when reading
metabolite identifiers from the SBML model annotations.

• constrained_rxns (Union[List[int], List[str], cobra.DictList],
optional) – The reactions that should be modeled with thermodynamic constraints.
Usually this list should contain all reactions except biomass and boundary reactions. The
list can contain either the reactions themselves, their indices or they identifiers.

• estimator (GibbsEstimatorInterface, optional) – Object used to estimate Gibbs
free energies.

• parameters (CompartmentParameters, optional) – The physiological parameters
(pH, ionic strength, . . .) of each compartment.

• concentrations (ConcentrationsPrior, optional) – Prior distributions for the
metabolite concentrations.

Returns
The thermodynamic space for the specified model.

Return type
ThermodynamicSpace

class pta.thermodynamic_space.ThermodynamicSpaceBasis(thermodynamic_space:
ThermodynamicSpace, explicit_log_conc:
bool = True, explicit_drg0: bool = True,
explicit_drg: bool = True, min_eigenvalue:
float = default_min_eigenvalue_tds_basis)

Full-dimensional basis of the thermodynamic space. It is possible to make only selected variables explicit in the
basis, reducing its dimensionality.

Parameters

• thermodynamic_space (ThermodynamicSpace) – The target thermodynamic space.

• explicit_log_conc (bool, optional) – True if log-concentrations should be repre-
sented explicitly in the basis, false otherwise. By default True.

• explicit_drg0 (bool, optional) – True if standard reaction energies should be repre-
sented explicitly in the basis, false otherwise. By default True.

• explicit_drg (bool, optional) – True if reaction energies should be represented ex-
plicitly in the basis, false otherwise. By default True.

• min_eigenvalue (float, optional) – Minimum eigenvalue of for a vector to be part of
the basis.

property to_log_conc_transform: Optional[Tuple[numpy.ndarray, numpy.ndarray]]

Gets the transformation from this space to log-concentrations. None if concentrations are not represented
explicitly.

property to_drg0_transform: Optional[Tuple[numpy.ndarray, numpy.ndarray]]

Gets the transformation from this space to DrG’°. None if standard reaction energies are not represented
explicitly.

38 Chapter 1. Probabilistic Thermodynamic Analysis

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PTA

property to_drg_transform: Optional[Tuple[numpy.ndarray, numpy.ndarray]]

Gets the transformation from this space to DrG’. None if reaction energies are not represented explicitly.

property to_observables_transform: Tuple[numpy.ndarray, numpy.ndarray]

Gets the transformation from this space to the selected observables.

property observables_ranges: Dict[str, List[int]]

The ranges of the different variables in a vector of observables.

property sigmas: numpy.ndarray

Gets a vector containing the standard deviation of each variable in the minimal basis.

property dimensionality: int

Gets the dimensionality of the basis.

to_log_conc(basis_vars: numpy.ndarray)→ numpy.ndarray
Transform a vector or matrix in the basis to a vector or matrix of log-concentrations.

Parameters
basis_vars (np.ndarray) – The input vector or matrix.

Returns
The transformed vector or matrix. None if concentrations are not represented explicitly.

Return type
np.ndarray

to_drg0(basis_vars: numpy.ndarray)→ numpy.ndarray
Transform a vector or matrix in the basis to a vector or matrix of standard reaction energies.

Parameters
basis_vars (np.ndarray) – The input vector or matrix.

Returns
The transformed vector or matrix. None if standard reaction energies are not represented
explicitly.

Return type
np.ndarray

to_drg(basis_vars: numpy.ndarray)→ numpy.ndarray
Transform a vector or matrix in the basis to a vector or matrix of reaction energies.

Parameters
basis_vars (np.ndarray) – The input vector or matrix.

Returns
The transformed vector or matrix. None if reaction energies are not represented explicitly.

Return type
np.ndarray

1.2. Thermodynamic and Flux Sampling (TFS) 39

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PTA

pta.utils

General utility functions.

Module Contents

pta.utils.WATER_OR_PROTON_IDS

pta.utils.enable_all_logging(level: int = logging.INFO)
Enable detailed logging in PTA and its dependencies. This is useful to debug possible problems.

Parameters
level (int, optional) – The desired logging level, by default logging.INFO

pta.utils.floor(value: float, decimals: int = 0)→ float
Same as math.floor, except that it rounds to a given number of decimals.

Parameters

• value (float) – Value to round.

• decimals (int, optional) – Number of decimals to round to, by default 0.

Returns
The rounded value.

Return type
float

pta.utils.ceil(value: float, decimals: int = 0)
Same as math.ceil, except that it rounds to a given number of decimals.

Parameters

• value (float) – Value to round.

• decimals (int, optional) – Number of decimals to round to, by default 0.

Returns
The rounded value.

Return type
float

pta.utils.get_internal_reactions(model: cobra.Model)→ List[str]
Gets the identifiers of all internal (non boundary) reactions in the model.

Parameters
model (cobra.Model) – The target model.

Returns
List of identifiers.

Return type
List[str]

pta.utils.tighten_model_bounds(model: cobra.Model, margin: float = 0.0001, round_to_digits: int = 6,
prevent_loops: bool = False, fva_result: pandas.DataFrame = None)

Apply FVA to a model to reduce the range of the flux bounds. The FVA result (plus a margin) is applied to each
reaction if it is tighter than the bounds in the model.

40 Chapter 1. Probabilistic Thermodynamic Analysis

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PTA

Parameters

• model (cobra.Model) – The model to analyze.

• margin (float, optional) – Margin to be applied to the FVA result when the computed
bounds are tighter than the original ones. This avoids overconstraining the model in case of
numerical inaccuracies in the solution. By default 1e-4.

• round_to_digits (int, optional) – Number of digits to which tighter bounds should
be rounded to. This limits the range of the coefficients for optimization problems. By default
6.

• prevent_loops (bool, optional) – If no FVA solution is provided, determines whether
regular or loopless FVA will be used.

• fva_result (pd.DataFrame, optional) – Precomputed FVA result. If specified, FVA
will not be run again, by default None.

pta.utils.find_blocked_reactions_from_fva_solution(model: cobra.Model, prevent_loops: bool =
False, zero_cutoff: Optional[float] = None,
fva_result: pandas.DataFrame = None)→
List[str]

Similar to cobrapy’s find_blocked_reactions(), but optionally takes a precomputed FVA solution as input.

Parameters

• model (cobra.Model) – The model to analyze.

• prevent_loops (bool, optional) – If no FVA solution is provided, determines whether
regular or loopless FVA will be used.

• zero_cutoff (Optional[float], optional) – Flux value which is considered to effec-
tively be zero. The default is set to use model.tolerance (default None).

• fva_result (pd.DataFrame, optional) – Precomputed FVA result. If specified, FVA
will not be run again, by default None.

Returns
List of identifiers of the blocked reactions.

Return type
List[str]

pta.utils.get_candidate_thermodynamic_constraints(model: cobra.Model, metabolites_namespace: str
= None, exclude_compartments: List[str] = None)
→ List[str]

Selects reactions in the flux space that are suitable to be used as thermodynamic constraints. By default this
method selects all internal reactions, excluding water transport all boundary and exchange reactions. Optionally,
it can exclude reactions where at least one metabolite belongs to certain compartments.

Parameters

• model (Union[FluxSpace, cobra.Model]) – The target model.

• metabolite_interpreter (MetaboliteInterpreter, optional) – Specifies how to
parse metabolite identifiers.

• exclude_compartments (List[str], optional) – List of identifiers of the compart-
ment to exclude from the candidates.

• ccache (CompoundCache, optional) – eQuilibrator’s CompoundCache object, used to
identify compounds using identifiers from different namespaces. For performance reasons,
it is recommended to use a single instance of CompoundCache for all functions in PTA.

1.2. Thermodynamic and Flux Sampling (TFS) 41

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PTA

Returns
The identifiers of the candidate reactions.

Return type
List[str]

pta.utils.get_reactions_in_internal_cycles(model: cobra.Model, biomass_name: Optional[str] = None,
atpm_name: str = 'ATPM')→ List[str]

Find all the reactions in a model involved in one or more internal cycles.

Parameters

• model (cobra.Model) – The target model.

• biomass_name (Optional[str], optional) – Identifier of the biomass reaction.

• atpm_name (str, optional) – Identifier of the ATP maintenance reaction.

Returns
The identifiers of the reactions involved in internal cycles.

Return type
List[str]

pta.utils.get_internal_cycles(model: cobra.Model, biomass_name: Optional[str] = None, atpm_name: str
= 'ATPM')→ numpy.ndarray

Uses efmtool to enumerate all the internal cycles in the network.

model
[cobra.Model] The target model.

biomass_name
[Optional[str], optional] Identifier of the biomass reaction.

atpm_name
[str, optional] Identifier of the ATP maintenance reaction.

Returns
A n-by-e matrix, where e in the number of EFMs and n is the number of reactions, where each
column is an EFM representing an internal cycle.

Return type
np.ndarray

pta.utils.to_reactions_idxs(reactions: Union[List[int], List[str], cobra.DictList, List[cobra.Reaction]],
model: cobra.Model)→ List[int]

Utility function to obtain a list of reaction indices from different representations.

Parameters

• reactions (Union[List[int], List[str], cobra.DictList, List[cobra.
Reaction]]) – Input list of reactions. Reactions can be defined through their index in the
model, their identifiers, or with the reactions themselves.

• model (cobra.Model) – The model in which the reactions are defined.

Returns
List of reaction indices.

Return type
List[int]

42 Chapter 1. Probabilistic Thermodynamic Analysis

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PTA

Raises
Exception – If the list is not of one of the expected formats.

pta.utils.to_reactions_ids(reactions: Union[List[int], List[str], cobra.DictList, List[cobra.Reaction]],
model: cobra.Model)→ List[str]

Utility function to obtain a list of reaction identifiers from different representations.

Parameters

• reactions (Union[List[int], List[str], cobra.DictList, List[cobra.
Reaction]]) – Input list of reactions. Reactions can be defined through their index in the
model, their identifiers, or with the reactions themselves.

• model (cobra.Model) – The model in which the reactions are defined.

Returns
List of reaction identifiers.

Return type
List[str]

Raises
Exception – If the list is not of one of the expected formats.

pta.utils.apply_transform(value: numpy.ndarray, transform: Tuple[numpy.ndarray, numpy.ndarray])→
numpy.ndarray

Applies an affine transform to a matrix.

Parameters

• value (np.ndarray) – The matrix to be transformed.

• transform (Tuple[np.ndarray, np.ndarray]) – Tuple describing the linear (transfor-
mation matrix) and affine (translation vector) of the transform.

Returns
The transformed matrix.

Return type
np.ndarray

pta.utils.get_path(path: Union[pathlib.Path, str])→ pathlib.Path
Gets a Path object from different representations.

Parameters
path (Union[Path, str]) – A Path object or a string describing the path.

Returns
A Path object.

Return type
Path

Raises
Exception – If the type of the input is not supported.

pta.utils.covariance_square_root(covariance: numpy.ndarray, min_eigenvalue: float =
default_min_eigenvalue_tds_basis)→ numpy.ndarray

Gets a full-rank square root of a covariance matrix.

Parameters

• covariance (np.ndarray) – The input covariance matrix.

1.2. Thermodynamic and Flux Sampling (TFS) 43

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

PTA

• min_eigenvalue (float, optional) – Minimum eigenvalue to keep during the truncated
EVD.

Returns
A full-rank square root of the covariance.

Return type
np.ndarray

pta.utils.load_example_model(model_name: str)→ cobra.Model
Load an example SBML model in cobrapy.

Parameters
model_name (str) – Name of the model file (without extension). This can be any of the models
in pta/data/models.

Returns
The loaded model in cobrapy format.

Return type
cobra.Model

pta.utils.find_rotation_matrix(x: numpy.ndarray, y: numpy.ndarray)→ numpy.ndarray
Compute a matrix that rotates the vector x onto vector y (without scaling).

Parameters

• x (np.ndarray) – The starting vector.

• y (np.ndarray) – The destination vector.

Returns
The computed rotation matrix.

Return type
np.ndarray

44 Chapter 1. Probabilistic Thermodynamic Analysis

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

CHAPTER

TWO

REFERENCES

45

PTA

46 Chapter 2. References

PYTHON MODULE INDEX

p
pta, 15
pta.commons, 27
pta.concentrations_prior, 27
pta.constants, 29
pta.data, 15
pta.data.concentration_priors, 15
pta.data.models, 15
pta.flux_space, 30
pta.model_assessment, 31
pta.pmo, 33
pta.sampling, 15
pta.sampling.commons, 15
pta.sampling.convergence_manager, 18
pta.sampling.primitives, 19
pta.sampling.tfs, 20
pta.sampling.uniform, 25
pta.thermodynamic_space, 36
pta.utils, 40

47

PTA

48 Python Module Index

INDEX

A
add() (pta.concentrations_prior.ConcentrationsPrior

method), 28
apply_to_chains() (in module

pta.sampling.commons), 17
apply_transform() (in module pta.utils), 43
autoresolve() (pta.model_assessment.StructuralAssessment

method), 32

B
B (pta.pmo.PmoProblem property), 35
B (pta.sampling.tfs.TFSModel property), 21
basis_samples (pta.sampling.commons.SamplingResult

property), 15

C
ceil() (in module pta.utils), 40
chains (pta.sampling.commons.SamplingResult prop-

erty), 16
check_convergence()

(pta.sampling.commons.SamplingResult
method), 16

close() (pta.pmo.PmoProblemPool method), 33
compartment_distributions

(pta.concentrations_prior.ConcentrationsPrior
property), 27

compute_psrf() (pta.sampling.commons.SamplerInterface
method), 16

compute_psrf() (pta.sampling.tfs.TFSModel method),
21

compute_psrf() (pta.sampling.uniform.UniformSamplingModel
method), 25

ConcentrationsPrior (class in
pta.concentrations_prior), 27

confidence_constraint (pta.pmo.PmoProblem prop-
erty), 35

confidence_level (pta.pmo.PmoProblem property),
34

confidence_radius (pta.sampling.tfs.TFSModel prop-
erty), 21

ConvergenceManager (class in
pta.sampling.convergence_manager), 18

copy() (pta.flux_space.FluxSpace method), 30
covariance_square_root() (in module pta.utils), 43

D
d (pta.pmo.PmoProblem property), 35
default_confidence_level (in module

pta.constants), 29
default_distribution

(pta.concentrations_prior.ConcentrationsPrior
property), 27

default_flux_bound (in module pta.constants), 29
default_log_conc (in module pta.constants), 29
default_max_drg (in module pta.constants), 29
default_max_non_intracellular_conc_mM (in mod-

ule pta.constants), 29
default_max_psrf (in module pta.constants), 29
default_max_threads (in module pta.constants), 29
default_min_chains (in module pta.constants), 29
default_min_drg (in module pta.constants), 29
default_min_eigenvalue_tds_basis (in module

pta.constants), 29
default_num_samples (in module pta.constants), 29
default_theta_s (in module pta.constants), 29
default_theta_z (in module pta.constants), 29
dfg0_prime_cov (pta.thermodynamic_space.ThermodynamicSpace

property), 37
dfg0_prime_cov_sqrt

(pta.thermodynamic_space.ThermodynamicSpace
property), 37

dfg0_prime_mean (pta.thermodynamic_space.ThermodynamicSpace
property), 36

dfg_prime_cov (pta.thermodynamic_space.ThermodynamicSpace
property), 37

dfg_prime_mean (pta.thermodynamic_space.ThermodynamicSpace
property), 37

dimensionality (pta.flux_space.FluxSpaceBasis prop-
erty), 31

dimensionality (pta.sampling.commons.SamplerInterface
property), 16

dimensionality (pta.sampling.primitives.FluxSpaceSamplingModel
property), 19

49

PTA

dimensionality (pta.sampling.tfs.TFSModel property),
21

dimensionality (pta.thermodynamic_space.ThermodynamicSpaceBasis
property), 39

drg (pta.pmo.PmoProblem property), 35
drg0 (pta.pmo.PmoProblem property), 35
drg0_prime_cov (pta.thermodynamic_space.ThermodynamicSpace

property), 37
drg0_prime_cov_sqrt

(pta.thermodynamic_space.ThermodynamicSpace
property), 37

drg0_prime_mean (pta.thermodynamic_space.ThermodynamicSpace
property), 37

drg_epsilon (pta.sampling.tfs.TFSModel property), 21
drg_prime_cov (pta.thermodynamic_space.ThermodynamicSpace

property), 37
drg_prime_mean (pta.thermodynamic_space.ThermodynamicSpace

property), 37

E
enable_all_logging() (in module pta.utils), 40

F
F (pta.pmo.PmoProblem property), 35
F (pta.sampling.tfs.TFSModel property), 21
fill_common_sampling_settings() (in module

pta.sampling.commons), 17
find_blocked_reactions_from_fva_solution()

(in module pta.utils), 41
find_rotation_matrix() (in module pta.utils), 44
floor() (in module pta.utils), 40
flux_lb_constraint (pta.pmo.PmoProblem property),

35
flux_scale (pta.pmo.PmoProblem property), 34
flux_ub_constraint (pta.pmo.PmoProblem property),

35
FluxSpace (class in pta.flux_space), 30
FluxSpaceBasis (class in pta.flux_space), 31
FluxSpaceSamplingModel (class in

pta.sampling.primitives), 19
forced_internal_cycles

(pta.model_assessment.StructuralAssessment
property), 31

FreeEnergiesSamplingResult (class in
pta.sampling.tfs), 22

from_cobrapy_model() (pta.flux_space.FluxSpace
static method), 31

from_cobrapy_model()
(pta.sampling.uniform.UniformSamplingModel
class method), 25

from_cobrapy_model()
(pta.thermodynamic_space.ThermodynamicSpace
static method), 37

G
G (pta.flux_space.FluxSpaceBasis property), 31
G (pta.sampling.primitives.FluxSpaceSamplingModel

property), 19
get() (pta.concentrations_prior.ConcentrationsPrior

method), 28
get_candidate_thermodynamic_constraints() (in

module pta.utils), 41
get_chains() (pta.sampling.commons.SamplerInterface

method), 16
get_chains() (pta.sampling.tfs.TFSModel method), 22
get_chains() (pta.sampling.uniform.UniformSamplingModel

method), 25
get_initial_points()

(pta.sampling.primitives.FluxSpaceSamplingModel
method), 19

get_initial_points() (pta.sampling.tfs.TFSModel
method), 22

get_internal_cycles() (in module pta.utils), 42
get_internal_reactions() (in module pta.utils), 40
get_path() (in module pta.utils), 43
get_reactions_in_internal_cycles() (in module

pta.utils), 42
get_reversible_reactions_ids_T()

(pta.sampling.tfs.TFSModel method), 21

H
h (pta.flux_space.FluxSpaceBasis property), 31
h (pta.sampling.primitives.FluxSpaceSamplingModel

property), 19

L
lb (pta.flux_space.FluxSpace property), 30
load() (pta.concentrations_prior.ConcentrationsPrior

static method), 27
load_example_model() (in module pta.utils), 44
log_c (pta.pmo.PmoProblem property), 35
log_conc_cov (pta.thermodynamic_space.ThermodynamicSpace

property), 37
log_conc_mean (pta.thermodynamic_space.ThermodynamicSpace

property), 37

M
m (pta.pmo.PmoProblem property), 34
map() (pta.pmo.PmoProblemPool method), 33
max_drg (pta.pmo.PmoProblem property), 34
max_ex_concentration

(pta.model_assessment.QuantitativeAssessment
property), 32

metabolite_distributions
(pta.concentrations_prior.ConcentrationsPrior
property), 27

50 Index

PTA

metabolite_ids (pta.flux_space.FluxSpace property),
30

metabolite_ids (pta.thermodynamic_space.ThermodynamicSpace
property), 37

metabolites (pta.thermodynamic_space.ThermodynamicSpace
property), 37

metabolites_df (pta.model_assessment.QuantitativeAssessment
property), 32

min_drg (pta.pmo.PmoProblem property), 34
min_samples_per_chain (in module pta.constants), 30
module

pta, 15
pta.commons, 27
pta.concentrations_prior, 27
pta.constants, 29
pta.data, 15
pta.data.concentration_priors, 15
pta.data.models, 15
pta.flux_space, 30
pta.model_assessment, 31
pta.pmo, 33
pta.sampling, 15
pta.sampling.commons, 15
pta.sampling.convergence_manager, 18
pta.sampling.primitives, 19
pta.sampling.tfs, 20
pta.sampling.uniform, 25
pta.thermodynamic_space, 36
pta.utils, 40

N
n_metabolites (pta.flux_space.FluxSpace property), 30
n_reactions (pta.flux_space.FluxSpace property), 30
n_reversible_reactions (pta.flux_space.FluxSpace

property), 30
non_intracellular_compartment_ids (in module

pta.constants), 29

O
objective (pta.pmo.PmoProblem property), 34
observables_ranges (pta.thermodynamic_space.ThermodynamicSpaceBasis

property), 39
orthants (pta.sampling.tfs.FreeEnergiesSamplingResult

property), 22

P
parameters (pta.thermodynamic_space.ThermodynamicSpace

property), 37
pmo_args (pta.sampling.tfs.TFSModel property), 21
PmoProblem (class in pta.pmo), 34
PmoProblemPool (class in pta.pmo), 33
prepare_for_pta() (in module

pta.model_assessment), 32

psrf (pta.sampling.commons.SamplingResult property),
16

pta
module, 15

pta.commons
module, 27

pta.concentrations_prior
module, 27

pta.constants
module, 29

pta.data
module, 15

pta.data.concentration_priors
module, 15

pta.data.models
module, 15

pta.flux_space
module, 30

pta.model_assessment
module, 31

pta.pmo
module, 33

pta.sampling
module, 15

pta.sampling.commons
module, 15

pta.sampling.convergence_manager
module, 18

pta.sampling.primitives
module, 19

pta.sampling.tfs
module, 20

pta.sampling.uniform
module, 25

pta.thermodynamic_space
module, 36

pta.utils
module, 40

Q
Q (in module pta.commons), 27
QuantitativeAssessment (class in

pta.model_assessment), 32

R
reaction_ids (pta.flux_space.FluxSpace property), 30
reaction_ids (pta.sampling.primitives.FluxSpaceSamplingModel

property), 19
reaction_ids (pta.thermodynamic_space.ThermodynamicSpace

property), 37
reactions_df (pta.model_assessment.QuantitativeAssessment

property), 32
rebuild_for_directions() (pta.pmo.PmoProblem

method), 36

Index 51

PTA

reversible_rxn_ids (pta.sampling.tfs.TFSModel
property), 21

run() (pta.sampling.convergence_manager.ConvergenceManager
method), 18

S
S (pta.flux_space.FluxSpace property), 30
S_constraints (pta.thermodynamic_space.ThermodynamicSpace

property), 37
sample_drg() (in module pta.sampling.tfs), 22
sample_drg0_from_drg() (in module

pta.sampling.tfs), 24
sample_flux_space_uniform() (in module

pta.sampling.uniform), 26
sample_fluxes_from_drg() (in module

pta.sampling.tfs), 24
sample_from_chains() (in module

pta.sampling.commons), 16
sample_log_conc_from_drg() (in module

pta.sampling.tfs), 23
SamplerInterface (class in pta.sampling.commons),

16
samples (pta.sampling.commons.SamplingResult prop-

erty), 15
SamplingException, 15
SamplingResult (class in pta.sampling.commons), 15
save() (pta.concentrations_prior.ConcentrationsPrior

method), 28
sigmas (pta.thermodynamic_space.ThermodynamicSpaceBasis

property), 39
sign_constraints (pta.pmo.PmoProblem property),

35
simulate() (pta.sampling.commons.SamplerInterface

method), 16
simulate() (pta.sampling.tfs.TFSModel method), 21
simulate() (pta.sampling.uniform.UniformSamplingModel

method), 25
solve() (pta.pmo.PmoProblem method), 35
solver (pta.pmo.PmoProblem property), 35
solver_options (pta.pmo.PmoProblem property), 35
split_chains() (in module pta.sampling.commons), 17
split_R() (in module pta.sampling.commons), 17
steady_state_constraint (pta.pmo.PmoProblem

property), 35
StructuralAssessment (class in

pta.model_assessment), 31
subspace() (pta.thermodynamic_space.ThermodynamicSpace

method), 37
summary() (pta.model_assessment.QuantitativeAssessment

method), 32
summary() (pta.model_assessment.StructuralAssessment

method), 31

T
T (pta.pmo.PmoProblem property), 35
T (pta.sampling.tfs.TFSModel property), 21
tfs_default_feasibility_cache_size (in module

pta.constants), 29
tfs_default_min_rel_region_length (in module

pta.constants), 29
tfs_steps_multiplier (in module pta.constants), 29
TFSModel (class in pta.sampling.tfs), 20
ThermodynamicSpace (class in

pta.thermodynamic_space), 36
ThermodynamicSpaceBasis (class in

pta.thermodynamic_space), 38
theta_s (pta.model_assessment.QuantitativeAssessment

property), 32
theta_z (pta.model_assessment.QuantitativeAssessment

property), 32
tighten_model_bounds() (in module pta.utils), 40
to_drg() (pta.sampling.tfs.TFSModel method), 21
to_drg() (pta.thermodynamic_space.ThermodynamicSpaceBasis

method), 39
to_drg0() (pta.thermodynamic_space.ThermodynamicSpaceBasis

method), 39
to_drg0_transform (pta.thermodynamic_space.ThermodynamicSpaceBasis

property), 38
to_drg_transform (pta.thermodynamic_space.ThermodynamicSpaceBasis

property), 38
to_fluxes() (pta.sampling.primitives.FluxSpaceSamplingModel

method), 19
to_fluxes_transform (pta.flux_space.FluxSpaceBasis

property), 31
to_fluxes_transform

(pta.sampling.primitives.FluxSpaceSamplingModel
property), 19

to_log_conc() (pta.thermodynamic_space.ThermodynamicSpaceBasis
method), 39

to_log_conc_transform
(pta.thermodynamic_space.ThermodynamicSpaceBasis
property), 38

to_observables_transform
(pta.thermodynamic_space.ThermodynamicSpaceBasis
property), 39

to_reactions_ids() (in module pta.utils), 43
to_reactions_idxs() (in module pta.utils), 42

U
ub (pta.flux_space.FluxSpace property), 30
UniformSamplingModel (class in

pta.sampling.uniform), 25
update_identifiers()

(pta.concentrations_prior.ConcentrationsPrior
method), 28

us_steps_multiplier (in module pta.constants), 29

52 Index

PTA

V
v (pta.pmo.PmoProblem property), 35
vs (pta.pmo.PmoProblem property), 34

W
WATER_OR_PROTON_IDS (in module pta.utils), 40

Index 53

	Probabilistic Thermodynamic Analysis
	Probabilistic Metabolic Optimization (PMO)
	Thermodynamic and Flux Sampling (TFS)
	Getting started
	Requirements
	Installation
	Installing PTA without samplers

	Simple example
	Expanding the example

	Model preprocessing
	Blocked reactions
	Forced internal cycles
	Detecting inconsistencies
	Resolving inconsistencies

	Computing tighter bounds

	The thermodynamic space
	The quick way
	Advanced initialization
	Metabolites namespace
	Constrained reactions
	Estimator
	Compartment parameters
	Concentrations prior

	Thermodynamic space basis
	References

	Optimizing thermodynamics
	Setting the objective
	Numerics

	Model assessment
	Thermodynamic anomalies
	Identifying anomalies
	Interpreting and curating anomalies
	Performance considerations
	References

	Sampling thermodynamics and fluxes
	Sampling reaction energies
	Sampling the conditionals

	API Reference
	pta
	Subpackages
	pta.data
	Subpackages
	pta.data.concentration_priors
	pta.data.models
	pta.sampling
	Submodules
	pta.sampling.commons
	Module Contents
	pta.sampling.convergence_manager
	Module Contents
	pta.sampling.primitives
	Module Contents
	pta.sampling.tfs
	Module Contents
	pta.sampling.uniform
	Module Contents

	Submodules
	pta.commons
	Module Contents
	pta.concentrations_prior
	Module Contents
	pta.constants
	Module Contents
	pta.flux_space
	Module Contents
	pta.model_assessment
	Module Contents
	pta.pmo
	Module Contents
	pta.thermodynamic_space
	Module Contents
	pta.utils
	Module Contents

	References
	Python Module Index
	Index

